Cultivation of Rice: Evolving towards Climate-Smart Crops for Precision in Resource Use Efficiency
Karishma Seem and Suresh Kumar
Published: November 30, 2021
Abstract  
Rice cultivation is one of the important economic activities of farmers, and it has been the backbone of livelihood opportunities for several farmers in certain areas. However, due to the limited availability of freshwater and the progressive decline in the share of water for agriculture (because of water pollution, reducing water table, inefficient irrigation systems, and increasing demands of water for domestic, industrial and other usages) cultivation of rice by transplanting cannot be sustained. The water-guzzling nature of transplanted rice (TPR) is facing the challenges of water scarcity, posing threats to continued rice cultivation. Moreover, repeated puddling for TPR adversely affects soil physical properties, deteriorates the performance of succeeding crops, and contributes to methane gas emissions. A grim water scenario in agriculture together with the highly inefficient rice production technologies, currently adopted by a majority of farmers globally, warrants the exploration of alternative rice production practices. Therefore, the need of the day is to use less water for irrigation while maintaining the crop yield (as well as the quality of the produce) for better water-productivity towards the concept of ‘Per Drop More Crop’. Direct-sown rice (DSR) is an emerging resource-conserving, climate-smart alternative to TPR. DSR is gaining popularity because of its low input cost and resource-conserving nature. It offers the advantages like saving irrigation water, lower labor requirements, less drudgery, early crop maturity, higher economic returns, and reduced methane emission. The need of conserving natural resources, particularly water, for better ecological balance has become one of the priorities for saving life on the earth. Producing food/feed/fodder in an environment-friendly manner by adopting agricultural practices that do not over-exploit the natural resources and harm agroecological conditions is necessary for maximum ecological efficiency.