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Abstract

    H1N1 and H3N2 Influenza remains a persistent threat to global health, with annual seasonal outbreaks causing a sizeable 
number to be severely ill and dead. To address this public health issue, mathematical modelling, particularly epidemic compart-
mental models are used to understand disease dynamics and guide public health policy. However, there are no systematic review 
to-date examining the epidemiological models for H1N1 and H3N2. Hence, this study is a scoping review of epidemic compart-
mental models of H1N1 and H3N2 seasonal influenza strains, using studies indexed in PubMed to 31 August 2025, inclusive. 
Of the 370 studies obtained, 81 studies are included and analysed to identify and characterize common trends in viral strains, 
methodological approach, thematic applications, and structural complexity. The results show the focus on the H1N1 viral strain 
(83.9% of studies), which reflects the impact of the 2009 H1N1 pandemic to the global and scientific community. Simultaneously, 
13.6% of research studies is focused on both H1N1 and H3N2 strains, indicating an interest towards understanding complex 
multi-strain interactions. From a methodological perspective, Ordinary Differential Equations (ODEs) continue to be the leading 
framework (80.3%), due to their ability to provide clear evaluation of population-level trends and effectiveness of interventions. 
However, the deliberate use of Stochastic Differential Equations (SDEs) and other models demonstrates a versatile approach 
to include uncertainty and subtle dynamics. Thematic analysis reveals a dual emphasis in the research field: a sizeable portion 
of studies is centred on Intervention and Policy Assessment (37.0%), whereas another key theme is Core Epidemiological Dy-
namics (33.3%), highlighting the need to translate theoretical knowledge into practical policy. Additionally, increased model 
complexity (i.e., more compartments) is directly correlated to detailed, policy-focused insights. The overall trend shows a shift 
from generic theoretical frameworks to advanced, “fit-for-purpose” methodologies that deliver prompt and reliable insights to 
support public health policies.

Introduction

     Every year, seasonal influenza outbreaks affect people all over the world, resulting in it being a widespread and persistent public 
health concern. Although frequently thought of as a common illness, the annual burden of seasonal influenza is extremely significant, 
with an estimated one billion cases worldwide, up to five million cases of severe illness, and approximately 290000 to 650000 influ-
enza-related respiratory deaths each year [1]; highlighting the ongoing threat of influenza, which disproportionately impacts suscep-
tible populations like young children, the elderly and people with chronic medical conditions (see https://www.cdc.gov/flu/about/
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viruses-types.html). The influenza A virus and these two subtypes are the main causes of seasonal epidemics worldwide that are 
circulating among the human population [2]. The 2009 H1N1 pandemic led to a surge in research and an ongoing effort to understand 
its viral epidemiology and dynamics [3], while the H3N2 virus exists as a co-circulating strain, bringing about its own set of unique 
epidemiological challenges.

    One of the key tools that public health officials use when trying to control and mitigate the effects of infectious disease, is to use 
mathematical modelling, particularly with compartmental frameworks. Compartmental models are the basic standard of quantitative 
epidemiology to track an individual’s movement between distinct health states; such as, Susceptible (S), Infectious (I), Recovered (R) 
in the SIR model, to simulate disease progression [4]. Such modelling techniques provide an organized and user-friendly method to 
represent complex population dynamics, so as to understand the mechanics of disease spread, predict epidemic trajectories, and eval-
uate the possible effects of public health interventions [5, 6]. The development and use of these models offer a scientific justification 
for policy choices, which ranges from planning for the demands of healthcare resources during a pandemic to optimizing vaccination 
strategies [7-9]. 

     However, there has not been a systematic review to-date to consolidate compartment-based epidemiological models for H1N1 and 
H3N2. Therefore, this study presents a scoping review on compartmental epidemic models for H1N1 and H3N2 viral strains. 

Methods

    This study follows the Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRIS-
MA-ScR) guidelines and checklist [10]. A scoping review methodology was employed due to the broad spectrum of modelling tech-
niques applicable to this research area. This approach enables the swift identification and mapping of the core conceptual framework 
and identification of the principal sources and types of available evidence [11].

Search Strategy

     PubMed searches for relevant literature were conducted on February 26, 2025, with final updates performed on September 01, 
2025. The search methodology employed a Boolean combination of terms representing influenza strains and modelling approach-
es. Specifically, the query combined keywords such as ‘H1N1’ and ‘H3N2’ with terms like ‘mathematics’, ‘epidemic’, ‘epidemiology’, 
‘transmission’, and ‘model’. The exact search syntax, applied universally across all fields, was (H1N1 OR H3N2) AND (“math* mod-
el*” OR “transmi* model*” OR “epidemi* model*”), resulting in the following search URL: https://pubmed.ncbi.nlm.nih.gov/?ter-
m=(h1n1[All+Fields]+OR+h3n2[All+fields])+AND+(“math*+model*”[All+Fields]+OR+”transmi*+model*”[All+Fields]+OR+”epi-
demi*+model*”[All+Fields])&filter=dates.1000/1/1-2025/8/31. The use of Boolean operators enhanced the accuracy of search 
results, thereby ensuring all relevant studies were included [12]. 

Exclusion Criteria

     Studies were excluded if they involved non-human subjects or genome studies, did not specifically investigate H1N1 or H3N2 viral 
strains, or lacked mathematical modelling. For example, studies that referred to animals used as biological ‘models’ for human influ-
enza, where the ‘model’ referred to the animal species itself, were excluded as this differs from the mathematical definition of ‘model’ 
(i.e., a system described using mathematical concepts) [13, 14]. Studies that were based on other types of models, e.g. agent-based 
model, statistical model, stochastic models, were excluded, as well as transmission models that were not specifically epidemic models.

Results and Discussion

    The search returned 370 studies. Following which, only 357 English full-text articles were found, with six duplicates removed. Full-
text analysis was conducted and only 81 articles met the selection criteria and were included for analysis, as shown in Figure 1. In-
depth analysis of 81 papers was conducted, and model characteristics of the papers were tabulated in Table 1.
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Figure 1: PRISMA diagram of study selection processes.

     Model Theme 1 (T1) is Modelling Methodologies & Data Utilization. Model Theme 2 (T2) is Core Epidemiological Dynamics. Model 
Theme (T3) is Contextual & Influencing Factors. Model Theme (T4) is Intervention & Policy Assessment. Model Sub-Theme 1 (S1) is 
Model Construction & Parameterization. Model Sub-Theme 2 (S2) is Spatiotemporal & Predictive Modelling. Model Sub-Theme 3 (S3) 
is Transmission Dynamics & Progression. Model Sub-Theme 4 (S4) is Disease Characteristics & Biology. Model Sub-Theme 5 (S5) is 
External & Environmental Factors. Model Sub-Theme 6 (S6) is Human & Social Context. Model Sub-Theme 7 (S7) is Impact & Evalu-
ation. Model Sub-Theme 8 (S8) is Intervention Strategies. Model Sub-Theme 9 (S9) is Parameter Estimation and Model Calibration. 
Model Sub-Theme 10 (S10) is Pattern Recognition and Algorithmic Modelling. Model Sub-Theme 11 (S11) is Forecasting and Real-Time 
Monitoring. Model Sub-Theme 12 (S12) is Spatiotemporal and Environmental Modelling. Model Sub-Theme 13 (S13) is Epidemic Wave 
Dynamics. Model Sub-Theme 14 (S14) is Transmission Dynamics and Epidemic Spread. Model Sub-Theme 15 (S15) is Evolution, Im-
munity, and Cross-Strain Dynamics. Model Sub-Theme 16 (S16) is Comparative Infectivity and Fatality. Model Sub-Theme 17 (S17) is 
Environmental and Ecological Impact. Model Sub-Theme 18 (S18) is Behavioural and Social Dynamics. Model Sub-Theme 19 (S19) is 
Economic and Policy Evaluation. Model Sub-Theme 20 (S20) is Healthcare Resource Planning. Model Sub-Theme 21 (S21) is Vaccina-
tion Strategy and Impact. Model Sub-Theme 22 (S22) is Drug Resistance and Strategic Interaction. 
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Study Strain Type of 
DE

No. of Compartments Model 
Theme

Model Sub-
Theme

[3] H1N1 SDE 3 T1 S1, S9
[15] H1N1 ODE 3 x (age group) T1 S1, S9
[16] H1N1 ODE SIR : 3 

SEIR : 4
T1 S1, S9

[17] H1N1 SDE 4 T1 S1, S9, S10
[18] H1N1 SDE 4 T1 S2, S11
[19] H1N1 ODE 4 T1 S2, S12
[20] H1N1 ODE 12 x (age group) T1 S2, S11
[21] H1N1 ODE 3 T1 S2, S11
[22] Both ODE 3 T1 S2, S11
[23] Both SDE 4 T1 S2, S12
[24] H3N2 ODE 4 x (region in country) T1 S2, S12
[25] Both ODE 5 T1 S2, S11
[26] H1N1 ODE 4 T1 S2, S11
[27] H1N1 ODE 5 x (age group) T1 S2, S11
[28] H1N1 Others 

(DE)
3 T1 S2, S11

[29] H1N1 ODE 4 x (city) T1, T2 S2, S3, S12, S13
[30] H1N1 SDE 3 x (age group) T2 S3, S14
[31] H1N1 ODE 5 x (groups within population) T2 S3, S13
[32] H1N1 SDE 3 x (age group) T2 S3, S14
[33] H1N1 ODE 5 x (traveller’s originating country) T2 S3, S14
[34] H1N1 ODE 5 T2 S3, S14
[35] H1N1 ODE 4 T2 S3, S14
[36] H1N1 SDE 6 x (mobility flows) x (distinct census areas) T2 S3, S14
[37] H1N1 ODE Isolation : 5 

Vaccination : 7 
Antivirals : 5 
School Closure : 4 
Combination : 11

T2 S3, S14

[38] H1N1 ODE 6 T2 S3, S14
[39] H1N1 ODE First Wave : 12 

Second Wave : 10
T2 S3, S14

[40] H1N1 ODE 3 T2 S3, S14
[41] H1N1 ODE 4 T2 S3, S14
[42] H1N1 ODE 4 T2 S3, S14
[43] H1N1 ODE 4 T2 S3, S14
[44] H1N1 ODE 3 x (individual within population) T2 S3, S14
[45] H1N1 ODE 4 T2 S3, S14
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[46] H1N1 Others

(DDE)

8 x (dummy groups) T2 S3, S14

[47] H1N1 ODE 4 
4 x (presence of cross immunity)

T2 S4, S15

[48] Both ODE 10 T2 S4, S15
[49] H1N1 ODE 3 T2 S4, S15
[50] Both ODE 4 T2 S4, S15
[51] Both ODE 44 x (age groups) x (viral strain) T2 S4, S15
[52] H1N1 ODE 7 T2 S4, S16
[53] H3N2 ODE 4 x (transmission route) x (age group) T2 S4, S15
[54] H1N1 ODE 7 x (type of prior or acquired immunity) x (immu-

nisation dose)
T2 S4, S15

[55] H1N1 ODE 3 x (age group) x (antibody titre level) T2 S4, S15
[56] H1N1 ODE 18 T3 S5, S17
[57] H1N1 ODE 4 x (states in country) T3 S5, S12
[58] H1N1 Others

(DE)

4 T3 S6, S18

[59] H1N1 ODE 3 T3 S6, S18
[60] H1N1 ODE 3 T3 S6, S18
[61] H1N1 ODE 3 x (age group) x (site) x (household) T3 S6, S18
[62] H1N1 ODE 3 x (colleges in a campus) T3 S6, S18
[63] H1N1 ODE 5 x (cities) T3 S6, S18
[64] H1N1 ODE 6 T3 S6, S18
[65] H1N1 SDE 4 T4 S7, S19
[66] H1N1 ODE 9 T4 S7, S19
[67] H1N1 ODE 4 T4 S7, S19
[68] H1N1 SDE 4 x (age group) T4 S7, S19
[9] H1N1 SDE 10 x (travel mode) x (countries) T4 S7, S20

[69] H1N1 SDE 5 x (between-city transmission) T4 S7, S19
[7] H1N1 ODE 3 T4 S7, S19

[70] H1N1 ODE 12 x (age group) x (complication risk) T4 S7, S19
[71] H1N1 ODE 5 x (age group) x (gender) T4 S7, S20
[72] H1N1 ODE 7 x (age group) x (level of pandemic severity) T4 S7, S20
[73] H1N1 ODE 17 T4 S7, S19
[74] H1N1 ODE 12 T4 S7, S20
[75] Both ODE 23 x (population from different hemispheres) T4 S8, S21
[76] H1N1 ODE 8 x (age group) T4 S8, S21
[77] Both ODE 6 x (age group) T4 S8, S21
[8] Both ODE 22 T4 S8, S21

[78] H1N1 ODE 7 x (age group) x (district in a country) T4 S8, S21
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[79] H1N1 SDE 7 x (population of different country) T4 S8, S22
[80] H1N1 ODE 9 x (age group) T4 S8, S21
[81] H1N1 SDE M1 : 3 

M2 : 3 x (different schools) 
M3 : 3 x (different schools) x (residential district)

T4 S8, S21

[82] H1N1 ODE 9 x (age group) T4 S8, S21
[83] H1N1 ODE 4 x (age group) x (complication risk) T4 S8, S21
[84] H1N1 ODE 5 x (children vs adults) x (risk level) x (vaccination 

status)
T4 S8, S21

[85] H1N1 ODE 5 x (age group) T4 S8, S21
[86] Both ODE 8 x (viral strain) x (age group) T4 S8, S21
[87] H1N1 ODE 3 T4 S8, S21
[88] H1N1 ODE 18 x (age group) T4 S8, S21
[89] H1N1 ODE 14 x (age group) x (number of weekly contacts) T4 S8, S21
[90] H1N1 ODE 3 T4 S8, S21
[91] Both ODE 8 x (season) T4 S8, S21

Table 1: Model characteristics of all included studies.

Distribution of Studies by Viral Strain

     The articles were first characterised by the viral strain (H1N1 or H3N2 or both) studied with the model. Among the papers included, 
68 articles (83.9%) were based on only H1N1 viral data [3, 15-21, 26-47, 49, 52, 54-66, 68, 9, 69, 7, 70-74, 76, 78-85, 87-90], 2 papers 
(2.5%) were based on only H3N2 viral data [24, 53], and 11 papers (13.6%) utilised viral data of both H1N1 and H3N2 strains [75, 77, 
8, 86, 91, 23, 22, 25, 48, 50, 51] as described in Table 1. 

     A substantial portion of the studies, 83.9%, focused on the H1N1 viral strain, which is likely a result of the extensive impact of the 
2009 H1N1 pandemic on the world, causing a surge in research in virus epidemiology and response measures. Major public health 
crises, such as pandemics, tend to cause such sudden waves in scientific research and funding directed to the study of the pathogen, re-
sulting in a disproportionate representation in scientific literature, as seen in our results. While the focus on H1N1 research has likely 
resulted in more mature and varied modelling techniques and methodologies, this also highlights the lack of attention towards other 
pandemic-relevant strains, such as H3N2, which has only 2.5% of studies solely dedicated to it. Knowledge gaps or lack of variation in 
modelling approaches for other such strains exist as a result. 

     Additionally, 13.6% of the studies modelled both H1N1 and H3N2 viral strains, pointing to an interest in understanding multi-strain 
dynamics within the field. This indicates a shift in influenza modelling from single-epidemic analyses towards more complex mod-
els that study the ecological and immunological interactions between different influenza strains over multiple epidemic waves. For 
instance, some research specifically evaluate the impact of vaccine mismatch between strains during large-scale events like the Hajj 
pilgrimage [75], or model multiple viral strains to understand the complex relationship between influenza virus characteristics, which 
include antigenic drift and shift, and the resulting cross-immunity dynamics [47]. This highlights the need for more detailed, ecologi-
cally sensitive models to capture the complex dynamics of influenza development and transmission in the real world.
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Distribution of Studies by Type of Differential Equation

    65 of the 81 articles included were based on ordinary differential equation (ODE) modelling (80.3%) [7, 8, 15, 16, 19-22, 24-27, 
29, 31, 33-35, 37-45, 47-57, 59-64, 66, 67, 70-78, 80, 82-91], 13 utilised stochastic differential equation (SDE) models (16.0%) [3, 9, 
17, 18, 23, 30, 32, 36, 65, 68, 69, 79, 81], and the remaining papers (3.7%) were classified as others - 2 were difference equation (DE) 
models [28, 58], and the remaining utilised delayed differential equation (DDE) models [46], as seen in Figure 2. 

   With 80.3% of studies utilizing ODEs as the primary modelling framework, this shows that ODEs are the preferred mathemati-
cal framework in epidemiological modelling. As ODEs are relatively simple, they are especially useful in capturing how populations 
change over time. This corresponds with compartmental models, which groups people into health states and track their movement 
between these states. As ODEs simulate continuous shifts in population compartments over time, they can be used to understand the 
typical course of a disease, such as peak incidence or total cases, or assess the efficacy of interventions. The simplicity and reliability 
of ODEs makes them a crucial tool in generating insights for resource allocation and strategic planning, in guiding public health policy.

    In order to fully understand epidemic dynamics, SDEs were used instead of ODEs, as seen in 16.0% of the studies, which aimed to 
capture time-varying drivers of an epidemic [18]. SDEs are used when it is important to capture the random fluctuations and variabil-
ity which naturally occur in real-world epidemics. These are especially crucial during early outbreak phases or in smaller populations 
[92], where unpredictable fluctuations can have a huge impact on transmission dynamics. With SDEs accounting for a sizeable portion 
of the studies, this reflects the importance of capturing variability in infectious diseases modelling, to provide more reliable and re-
fined estimates to support risk assessment and develop adaptive public health interventions. 

    The remaining 3 studies, accounting for 3.7% of the total, fall into the “Others” category, with 2 studies utilizing DEs [28, 58] and 
1 study employing DDEs [46]. Thus, researchers are increasingly turning to other frameworks, apart from ODEs, to capture indi-
vidual-level interactions or extract insights from complex datasets. By strategically using a variety of modelling frameworks that is 
well-suited to the unique challenges of each study, more complex research problems can be studied, driven by access to extensive data, 
increased computational power, and the need for more precise models of disease dynamics.

Figure 2: Type of equation used in epidemic compartmental models (Consolidated from Table 1).

Distribution of Studies by Model Themes

     As illustrated in Table 1, these studies were classified into 4 major themes: Modelling Methodologies and Data Utilization, Core Epi-
demiological Dynamics, Contextual and Influencing Factors, and Intervention and Policy Assessment, and shown in Figure 3. 
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    16 papers [3, 15-29] (19.8%) looked into Modelling Methodologies and Data Utilization, with 4 papers exploring “Model Construc-
tion and Parameterization” [3, 15-17], and 12 papers exploring “Spatiotemporal and Predictive Modelling” [18-29]. Within “Model 
Construction and Parameterization”, this was broken down into Parameter Estimation and Model Calibration (4 papers) [3, 15-17], 
and Pattern Recognition and Algorithmic Modelling (1 paper) [17]. Within “Spatiotemporal and Predictive Modelling”, this was broken 
down into Forecasting and Real-Time Monitoring (8 papers) [18, 20-22, 25-28], and Spatiotemporal and Environmental Modelling (4 
papers) [19, 23, 24, 29]. Studies within this theme focused on improving the accuracy of basic parameters through rigorous estimation 
and calibration. In doing so, this can generate accurate predictions and real-time insights, which makes frameworks more depend-
able, adaptable and data-driven to keep up with the challenges of public health. Using this method, researchers can uncover complex 
relationships in how diseases spread across time and space, and identify environmental factors that influence disease transmission. 

     27 papers (33.3%) focused on Core Epidemiological Dynamics [29-55], which is the second major theme in this review. Within 
this, 9 papers focused on “Disease Characteristics and Biology” [47-55], and 18 papers focused on “Transmission Dynamics and Pro-
gression” [29-46], and these can be further broken down into Comparative Infectivity and Fatality (1 paper) [52], Evolution, Immunity 
and Cross-Strain Dynamics (8 papers) [47-50, 53-55], Epidemic Wave Dynamics (2 papers) [29, 31], and Transmission Dynamics and 
Epidemic Spread (16 papers) [30, 32-46]. The primary focus within this theme are Transmission Dynamics and Epidemic Spread, which 
accounts for 19.8% of all papers, and Evolution, Immunity and Cross-Strain Dynamics, which accounts for 9.9% of all papers. These sub-
themes account for a sizeable portion of all papers, demonstrating a strong research interest towards deepening the understanding of 
disease transmission and viral evolution, while also developing practical public health tools. 

     9 papers (11.1%) focused on Contextual and Influencing Factors [56-64] impacting viral transmission, with 7 papers studying “Hu-
man and Social Contexts” [58-64], and 2 papers exploring “External and Environmental factors” [56, 57]. This can be further broken 
down into Behavioural and Social Dynamics (7 papers) [58-64], Environmental and Ecological Impact (1 paper) [56], and Spatiotem-
poral and Environmental Modelling (1 paper) [57]. These papers show that epidemics are not only impacted by the biological aspects 
of the disease, but also by human behaviour, social structures, and environmental conditions (termed non-biological elements). With 
most of the papers within this theme arising from the sub-theme of Behavioural and Social Dynamics (7 papers, 8.6%), and with 
research highlighting the impact of “voluntary avoidance behaviour” on disease transmission [61, 64], this emphasizes the need for 
more comprehensive models that include the biological aspect of the disease and account for the intricate effects of the non-biological 
elements, to support effective public health strategies.

     30 papers [7-9, 65-91] (37.0%) focused on Interventions and Policy Assessments, with 18 papers focused on “Intervention Strate-
gies” [8, 75-91], and 12 papers focused on “Impact and Evaluation” [7, 9, 65-74]. These can be further broken down into Vaccination 
Strategy and Impact (17 papers) [8, 75-78, 80-91], Drug Resistance and Strategic Interaction (1 paper) [79], Economic and Policy Plan-
ning (8 papers) [7, 65-70, 73], and Healthcare Resource Planning (4 papers) [9, 71, 72, 74]. Of the four themes, this is the largest theme 
accounting for 37.0% of studies and within this theme, Vaccination Strategy and Impact, and Economic and Policy Planning, are the 
most prominent sub-themes that accounted for 21.0% and 9.9% of studies, respectively. These highlight a key objective of modelling 
research - to provide practical insights for public health officials to make informed decisions, particularly in resource allocation and 
strategic planning during pandemics. Another sub-theme, Healthcare Resource Planning (4.9%), highlights the tangible, operational 
benefits of epidemiological models. During pandemics, accurate forecasting of resources, such as ICU beds or antiviral medications, 
are essential [9, 71]. This highlights how epidemiological models are utilized for crisis management during pandemics, making this 
area of research extremely relevant and necessary to current operational needs in public health. Thus, models within this theme aim 
to provide actionable insights for public health decisions. 

     The distribution of papers across the two main themes, Core Epidemiological Dynamics, and Interventions and Policy Assessments, 
highlights the need to establish a robust scientific foundation that can be effectively applied to public health, to solve real-world prob-
lems and guide policy research.
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Figure 3: Epidemic Compartmental Models Classified by Themes and Subthemes (Consolidated from Table 1).

Distribution of Studies by Number of Compartments

     The papers were characterised by the number of compartments in their models, as an indicator of its structural complexity and the 
level of detail it captured, and the results in Table 1 was summarised and provided in Table 2. 

     From Table 2, models with 3 to 4 compartments are the most common, representing 51.9% of studies [3, 7, 15-19, 21-24, 26, 28-30, 
32, 35, 37, 40-45, 47, 49, 50, 53, 55, 57-62, 65, 67, 68, 81, 83, 87, 90], where these simple models would be used to investigate the basic 
epidemiological concepts or general trends at the population level. However, a huge portion of studies (50.6%), utilize models with 5 
or more compartments, indicating the prevalence of complex and highly stratified models. Specifically, complex models with 5 to 11 
compartments take up 37.0% of studies [9, 25, 27, 31, 33, 34, 36-39, 46, 48, 52, 54, 63, 64, 66, 69, 71, 72, 76-80, 82, 84-86, 91], and 
highly stratified models take up 13.6% of studies [8, 20, 39, 51, 56, 70, 73-75, 88, 89]. 

     Among the studies with greater model complexity, 27 studies [9, 20, 27, 31, 33, 36, 46, 51, 54, 63, 69-72, 75-80, 82, 84-86, 88, 89, 91] 
(33.3%) were stratified by age groups, geographical units, or social contexts, highlighting the need for real-world heterogeneity to be 
included in the models to provide meaningful and applicable insights. While simple models with fewer compartments can provide a 
general overview, they are not be able to provide a deep understanding of the complex transmission dynamics in disease epidemiology 
or for comprehensive policy evaluations. Thus, number of compartments in the models researched upon have increased and included 
greater stratification, to obtain more accurate and effective models.

    Although some models can be extremely complex, for example, involving 23 compartments across populations from North and 
South hemispheres [75], or 44 compartments across age groups across viral strains [51], there is a clear balance between levels of 
model complexity - highly stratified models (13.6%) are less common and much fewer than complex models (37.0%). While increased 
complexity provides for more accurate models, practical limitations with regards to the parameterization viability, computational 
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efficiency, and the interpretability of results for public health authorities, must be considered as well. Thus, the distribution of studies 
that is described in this segment is reflective of the compromise between realism and ease of utility of the model.

Model Complexity No. of Studies % of Studies
Simple Model (3 – 4 compartments) 42 51.9%
Complex Model (5 – 11 compartments) 30 37.0%
Highly Stratified Models (≥12 compartments) 11 13.6%

Table 2: Epidemic Compartmental Models by Complexity (Consolidated from Table 1).

Breakdown of Model Themes with Equation Type

     A further analysis of the relationship between themes and type of equation was undertaken and illustrated in Table 3. Within Mod-
elling Methodologies and Data Utilization, 11 papers utilised the ODE framework [15, 16, 19-22, 24-27, 29], 4 used SDE [3, 17, 18, 23], 
and 1 used DE [28]. Within Core Epidemiological Dynamics, 23 papers employed ODEs [29, 31, 33-35, 37-45, 47-55], 3 used SDEs [30, 
32, 36], and 1 paper utilised DDEs [46]. Within Contextual and Influencing Factors, 8 papers employed ODEs [56, 57, 59-64], and 1 
utilised DEs [58]. Within Intervention and Policy Assessments, 24 papers utilised ODEs [7, 8, 66, 67, 70-78, 80, 82-91], 6 used SDEs 
[9, 65, 68, 69, 79, 81].

Model Theme ODE SDE Others
Modelling Methodologies and Data Utilization 11 4 1 (DE)
Core Epidemiological Dynamics 23 3 1 (DDE)
Contextual and Influencing Factors 8 0 1 (DE)
Interventions and Policy Assessments 24 6 0

Table 3: Model Theme by Equation Type (Consolidated from Table 1).

Breakdown of Model Theme with Model Complexity

     Analysis of model theme was conducted alongside the number of compartments included in the model to identify possible correla-
tions between the two, as seen in Table 4. Within the theme of Modelling Methodologies and Data Utilization, 13 papers used simple 
models [3, 15-19, 21-24, 26, 28, 29], 2 papers used a complex model [25, 27], and only 1 paper used a highly stratified model [20]. 
Within the theme of Core Epidemiological Dynamics, 16 papers contained simple models [29, 30, 32, 35, 37, 40-45, 47, 49, 50, 53, 
55], 11 papers contained complex models [31, 33, 34, 36-39, 46, 48, 52, 54], and 2 papers contained highly stratified models [39, 51]. 
Within the theme of Contextual and Influencing Factors, 6 papers utilised a simple model [57-62], 2 papers were complex models [63, 
64], and 1 paper was a highly stratified model [56]. While most used a simple model, these were mostly stratified models [57, 61, 62]. 
Within the theme of Interventions and Policy Assessments, 8 papers used simple models [7, 65, 67, 68, 81, 83, 87, 90], 15 papers used 
complex models [9, 66, 69, 71, 72, 76-80, 82, 84-86, 91], and 7 papers used highly stratified models [8, 70, 73-75, 88, 89]. Within this 
theme, complex models were more commonly used, and it was also noted that 21 papers utilized a stratified model [9, 68-72, 75-86, 
88, 89, 91].



Citation: Maurice Han Tong Ling., et al. “A Scoping Review (To 31 August 2025) of Compartmental Epidemic Models for H1N1 and H3N2 Seasonal 
Influenza”. Medicon Medical Sciences 9.4 (2025): 15-31.

A Scoping Review (To 31 August 2025) of Compartmental Epidemic Models for H1N1 and H3N2 Seasonal Influenza
25

Theme Simple Model 
(3 - 4 compartments)

Complex Model 
(5 – 11 compartments)

Highly Stratified Model 
(12 – 44 compartments)

Modelling Methodologies and Data 
Utilization

13 2 1

Core Epidemiological Dynamics 16 11 2
Contextual and Influencing Factors 6 2 1
Interventions and Policy Assessments 8 15 7

Table 4: Model Complexity by Theme (Consolidated from Table 1).

Relationship between Model Themes, Methodologies and Complexity

     Considering modelling methodologies and data utilization, ODEs and simpler models are most common. ODEs can provide straight-
forward results that are easily interpretable, to understand fundamental patterns in disease progression. SDEs are also used, par-
ticularly in the sub-theme Forecasting and Real-Time Monitoring [18], to quantify uncertainty, and deduce parameters from noisy or 
incomplete data. Within the same sub-theme, Difference Equations were also used [28], suggesting that the modelling framework 
selected should be based on data availability and forecasting goals. Other sub-themes such as Parameter Estimation and Model Cali-
bration and Pattern Recognition and Algorithmic Modelling highlight the importance of improving model reliability and integrating ad-
vanced techniques like machine learning. Simple models are typically used to isolate and understand the impact of individual variables 
towards disease transmission dynamics, increasing their ease of use. 

   In terms of core epidemiological dynamics, studies show a wide spectrum of modelling complexity, dependent on the research 
question and the granularity required. Simpler models, like the basic SIR or SEIR structures, can be used to explore theoretical inves-
tigations of basic mechanisms. On the other hand, more complex models can be used to capture complex populations structures, like 
human mobility networks or intricate biological processes, such as multi-strain interactions and detailed immune responses, as seen 
in [31, 33, 37, 38]. Various modelling frameworks are also employed within this theme, most notably ODEs, due to their ease of use. 
However, SDEs and DDEs are also used, particularly to include randomness and uncertainty, or time-lagged effects, within the model. 

   Most employed the ODE framework to consider contextual and influencing factors, and used stratified models, whether by age, 
geography, household, or site. Stratification helps to better understand the minute differences in human behaviour and transmission 
patterns across sub-populations. Even though most studies used ODEs and simple models with few compartments, multiplicative 
stratification allowed the models greater complexity by incorporating tiny differences in subpopulations into the model. SDEs and DEs 
were also employed in some studies to include randomness and uncertainty in real-world data.

    In terms of intervention and policy assessment, models tend to be more complex, highlighting the importance of capturing differ-
ences at the population-level and scenario-specific intervention effects. This granularity is essential for evidence-based policy formu-
lation. Most studies used ODEs, but SDEs also accounted for a substantial number of studies. SDEs can capture uncertainty and deduce 
parameters from noisy or incomplete data, which is particularly useful in risk assessment and resource management. Many of the 
studies were complex models, with 5 or more compartments, and majority of the papers included used multiplicative stratification. 
This allows minute differences between subpopulations to be included in the models. 

   Overall, variation in model complexity across the themes reflects the diverse research questions being studied, from high-level 
analysis of population dynamics to more granular studies of specific demographic or biological factors. The preference for models of 
increased complexity or stratification highlights the importance of capturing heterogeneity between subgroups to accurately reflect 
the dynamism of real-world scenarios, which are essential for contextual modelling and evidence-based policy formulation. However, 
this is dependent on data accessibility and processing power. As computation power and data collection technology improves, such as 
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through digital surveillance and comprehensive demographic surveys, it is then possible to build and evaluate increasingly complex 
models. The specific modelling framework is chosen depending on the complexity of the research question, and the specific thematic 
area to be investigated. The different model themes that are encapsulated in this study demonstrates the interdisciplinary nature of 
modern-day epidemiological modelling, integrating knowledge from different fields such as computer science, statistics, and social 
sciences.

Implications for the Future

    The findings above highlight the importance of compartmental models in influenza epidemiology, which shows their adaptability 
and increasing complexity to meet the demands for granular insights. This signifies a shift from theoretical research to evidence-based 
research for practical applications. The use of multiplicative compartmentalization - stratifying by age, geography, or other factors - 
across various themes, reveals an advanced method in integrating real-world heterogeneity. Advances in methodological frameworks 
have made it possible for models to provide more realistic depictions of disease systems, improving their use in policy development. 
The constant improvement and diversification of these approaches reflects the need for models that can answer more complex epide-
miological questions with greater accuracy and adaptability.

Limitations and Future Research

     With compartmental models becoming more complex to better reflect real-world dynamics, this also brings about new challenges. 
One such challenge is that of increased data requirements, where extensive and high-quality data is required for parameter estimation 
and validation. This can be challenging to provide in resource-constrained settings or for emerging pathogens where data remains 
scarce. Another challenge is the computational demands of increasingly complex models. For such models, the computational burden 
of running and analysing the data can be substantial, resulting in limited utility for rapid, real-time decision-making. Furthermore, 
the identifiability of parameters in complex models can be challenging, impacting the reliability of their predictions, as previously 
discussed [16].

    To address these challenges, future research should focus on several key areas. First, more efficient computational methods and 
statistical techniques need to be developed to manage the increased data requirements and computational burden of complex models, 
especially for real-time applications. Second, further investigation into H3N2-specific dynamics using more complex models must be 
conducted to bridge the identified research gap. Third, diverse data sources, including behavioural, environmental, and genomic data, 
need to be integrated to further improve model realism and predictive power. Fourth, expanding the research to include alternative 
modelling frameworks, such as Agent-Based Models, Stochastic Models, to provide more insights into individual-level interactions and 
behaviours. Lastly, fostering “Communities of Practice” between public health professionals and mathematics modellers, as suggested 
by existing literature [93], can help ensure that modelling advancements are effectively translated into actionable public health policy. 
This collaborative approach will help bridge the gap between theoretical modelling and practical application, ensuring that future 
models are not only scientifically robust, but also directly relevant to the challenges of influenza control and prevention.

Conclusion

     This scoping review describes a dynamic and evolving research landscape of compartmental models for seasonal influenza (A/H1N1 
and A/H3N2) in which model structure and methodology are intricately linked to the specific research question, reflecting a shift from 
theoretical models to those focused on practical applications for public health preparedness and response. 

    While most modelling efforts have been focused on H1N1 viral strain, there is increased interest in modelling both H1N1 and H3N2 
viral strains together, by accounting for interactions between both strains, so to have a more comprehensive understanding of the 
influenza virus. While ODEs are generally preferred due to their ease of use, they are unable to account for uncertainty, social be-
havioural dynamics and time-lagged effects as compared to SDEs, DDEs and DEs. Thus, the methodological framework selected is to 
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be considered against the purpose of the model. The result of thematic analysis indicates focus on Intervention and Policy Assessment 
and Core Epidemiological Dynamics, indicating researchers remain committed to deepening their understanding of disease transmis-
sion, and translating this knowledge into actionable insights for public health officials. The direct correlation between increased com-
partmentalization and need for granular insights supports the finding that model complexity is driven by the need for more realistic 
and practical models. 

     Overall, what initially began as descriptive modelling in the classic SIR model [4], has evolved into prescriptive models with highly 
stratified designs. This reflects the increasing complexity of research questions and the need for the field of public health to take on a 
more proactive approach. Although challenges of data scarcity, computational burden and parameterization remain, researchers con-
tinue to push for advancements in the field of modelling. With the findings of this paper, we hope to provide public health officials with 
the information needed to reduce the social impact of influenza and create a robust infrastructure to manage future threats.
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