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Abstract
     The present paper aims to design an active vehicle system suspension by modification passive suspension into consideration 
the chassis is flexible to provide us the actual suspension image to make the best performance of the car and ride comfort.  Cre-
ation of a State-Space half-car Model from a Finite Element, Model achieved by use MATLAB and Controlled by (LQR) Problems 
with its parameters Q and R which used in the determination of optimal car suspension systems design. The challenge is mini-
mizing the chassis deflection; displacement and reduce the acceleration of suspension vibration. It is shown in our result that the 
model response to the Q and R-value is positive.
Keywords: Finite Element method; Beam equation; alf car vehicle; Simply supported beam

Introduction

     The half-car model has a flexible chassis as the sprung mass which stands on two springs and two wheels act by two masses. The 
passive suspension parameters of a system are generally modified, which select for realizing certain equalization between road case 
and ride comfortably [1]. A half-car model analysis performed of linear and nonlinear semi-active dampers. Using Matlab-Simulink 
software, found the system response to a harmonic excitation of variable frequency and an impulse excitation [2]. By using a half-car 
model to discuss the car’s dynamic response under random road excitations as input. The vehicle body mass, body mass moment of in-
ertia, the front/rear wheels masses, damping coefficients, front/rear suspensions spring stiffness, the front/rear suspension locations 
distances to the center of gravity of the vehicle body, and front/rear tires stiffness are considered as random variables [3]. By studied 
using Matlab programming package, the control of linear half-car suspension by different control systems was developed to minimize 
the deflection which was born due to road disturbances. Comparisons between passive and active, linear simulation models have been 
carried out with different control schemes. The result of these comparisons was that the performance of the active linear model was 
attuned better than the passive linear model [4]. According to the ISO ride comfort techniques we can used the shock absorber with the 
auto-generation which permits collecting waste energy with an asymmetric ratio of compression [5] the rides vibration behavior Stud-
ied, the vehicle dynamic responses analyze, and the rider acceleration responses by using the FEM and its modal properties have been 
calculated. An explanation of the modal superposition theory is given and the possibility of incorporating this theory with Lagrange’s 
equations for modeling a truck containing flexible subsystems is discussed and applied. Numerical results are presented for the truck, 
including power spectral densities and root mean square values of the vehicle dynamic response variables [6]. With a uniform load by 
using the finite element method, the vertical deflection of the chassis is considered. The governing differential equation is described 
by the Bernoulli beam which is a fourth-order differential equation [7] and the Lagrangian Method [8] many model reduction methods 
have been proposed in the reaches of approximating the high dimensional model with a lower order model. We envision that these sys-
tems-oriented model reduction methods complementing the existing Large-scale finite element models are routinely used in design 
and optimization for complex engineering systems [9]. The Models born from FEM are difficult to handle for control system design. so, 
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the algorithm is presented that converts a system-which born from FEM into the state-space model of an interconnected system, thus 
decreases the complexity of synthesizing a distributed control strategy. So, we can say the FEM has an important role in the modeling 
of complex systems.   A state-space representation of this System was obtained through FEM analysis which converts this model from 
lumped state-space form to interconnected form. then, it was designed by using the homotopy approach and decentralized controller 
[10]. He state-space model was used as reference one for modal decreasing whereby a balanced reduction method was applied. The 
reliability of the model is verified by comparative between the impulse response of the full model and the miniature model in the time 
domain. this result was Obtained afterward to set model dynamic behavior in the state space by using MATLAB software [11]. due to 
irregular road surface, vibration on the passenger seat generated so the active suspension system designed to reduce it [12]. Or low-
cost semi-active suspension replacing by passive suspension [13]. In the present paper, The Galerkin method of finite element [14], 
by substituting a test function to the governing equations. We will explain the use of the Galerkin Finite Element Method to solve the 
beam equation with the assist of Matlab (fig (1)). Complex partial differential equations that describe this system can be decreased to 
a set of linear equations that can easily be solved by this method [14].  Also, we can adjust the system using the state-space equation 
by using the linear quadratic regulator to control the vibration amplitude and its acceleration. 

Figure 1: Galerkin Finite Element.

Figure 2: Beam Element.

Governing Equation

     The Euler-Bernoulli beam theory as shown in figure (2), the transverse deflection 𝑢(x) of the beam is governed by the fourth-order
differential equation [15].

0 ≤ x ≤ L
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Subject to the free end boundary conditions

     Assuming the function y(x) = I *𝐸 is constant, where (I and E) is the moment of inertia and modulus of elasticity of the beam respec-
tively. The transversely distributed load is 𝑓 (𝑥, 𝑢), equal to𝑞 (x) u(x) + 𝑝 (𝑥), in the linear case, where 𝑢(𝑥) is the deflection of the beam,
𝑞 (𝑥) is the coefficient of ground elasticity and 𝑝(𝑥) is the uniform load applied to the beam. by substituting from the value of equation
(1) we get the following.

     When the beam is fixed at ends and u (0) = 0, the solution of 𝑢 (𝑥) describes the deflection of the beam under the load 𝑝 (𝑥). In this
case, the governing equations become as (4).

     For simple data functions 𝑓 (𝑥, 𝑢) and y(𝑥), (in equation (1)) the exact solution of beam equation with boundary condition can be
found by standard methods that are well known in the literature of ordinary differential equations and their applications. For more 
developed data functions, when exact methods fail, numerical methods can be successfully applied to find an approximate solution 
for a broad class of boundary value problems. In the next section, we shall utilize the Galerkin Finite Element Method (FEM) to solve 
equation (4) [17]. 

Galerkin Finite Element Method 

    Stage one of the Galerkin FEM is the determination of the domain [15]. which is divided into a finite set of line elements, each of 
which has two nodes. Stage two of the Galerkin method is to obtain the weak form of the differential equation. For this purpose, we 
multiply the residual of a differential equation (4) by a weight function w(𝑥) and integrate it by parts to evenly distribute the order of
differentiation on 𝑢 and 𝑤. The result is the equation [18].

 
by balance the weight function to the approximating function 𝑤𝑖 = 𝑁𝑖 ,

we get

After obtaining the weak form, we proceed to choose the suitable elements approximating functions. It can be noted that the highest 
order of the derivative on (𝑥) in the weak form (5, 6) is three; therefore, we choose an approximating function that is thrice differen-
tiable. this request is satisfied by cubic interpolation polynomial, where these cubic interpolation functions are known as Hermit cubic 
interpolation functions [18].
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     Where   N1, N2, N3, & N4 are called the shape functions for a beam element. For the beam element, N1= 1 when evaluated at node 1 
and N1=0 when evaluated at node 2.  And from equation (6) the stiffness matrix and force vector are given as follow

, And the force vector is 

For the first element

The remaining elements are found similarly. The stiffness matrix [18] becomes

Similarly, we can obtain the force vector matrix. The first value in the force vector is evaluated below [17].

 

The remaining values are obtained in a similar manner using their corresponding shape functions [18]. The resulting force vector is 
given as 

 
The corresponding system from equation (9), (11) can be represented as 

Force = [Stiffness] *[Displacement].

The equations system was solved by using MATLAB software. The element displacements were solved under different conditions 
prescribed [18].

Derivation of the stiffness matrix for a spring element

     The local nodal force at node 1 for the spring element is associated with the local axis y. the local axis acts in the direction of the 
spring to be able to directly measure displacement and force along with the spring. The local nodal displacements are  for 
the nodal of the elements as shown in Fig. (3). the force at node one can be written as follow:
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For node number two as follow.

For node number two as follow.

Or we can write the equation 13, 14 as follow.

So, we can write the stiffness matrix for element spring assuming k1 equal k2

Finite Element modelling

By using FEM to calculate the node beam displacement of the and its associated modes of the flexible beam supported by two springs 
at its ends (without damping for our case). The stiffness and mass element matrices that derived for the beam bending motion assum-
ing Euler_ Bernoulli bending theory.  the beam is discretized (N-1) two-node elements generating N nodes. Fig. (2) shows an element 
that has two degrees of freedom per node, ui, φi represents displacement and deflection of (i)th node, ui+1 and φi+1 represents displace-
ment and deflection of (i+1)th node respectively.

The global stiffness matrix for our case

From equation (12), (16) for the beam element and spring element respectively (her for the study assume the beam is one element) 
we can get the global stiffness matrix for all the system as follow:

By using the boundary condition for the system. Then a global stiffness matrix becomes as follow
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We must know the global stiffness for our modeling will take another form because the beam divides into two elements and assuming 
the boundary condition for the propped cantilever beam Fig. (1). 

Drive the element mass matrix for the beam

Where: m=ρAL, N= [N1 N2 N3 N4]we can get the value of (N) from equation (7). Now, we can get the value of (NT N) as follow 

 
Now,

 
For the element N1 N2, and we can do all elements of equation (19) in the same way to get the global mass matrix (20) for beam in our 
system as follow:

System input 

Figure 3: Sketch half-car Model System.
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     Fig. 3 shows the sketch half-car model system. The suspension model consists of a chassis as a beam and two axles. Linear spring 
supports the chassis without includes the tires. The model excited through the tires as a base motion as the input displacement from 
the road equals sinusoidal wave at the front tire (x= X sin wt.) and the same value at the rear tire additional time delay (x=X sin wt. 
+ L/v) as shown in figure 4.  Where X is the amplitude of displacement and equal 0.1, L the length of the chassis, and v is the velocity of 
the vehicle [1]. the tire contacts act as the constraints of this system. Thus, consider tires are static. so, we can replace it with two pins. 
Where cf, cris the dampers of front and rear respectively. and (kf and kr) is the spring for the front and rear suspension respectively. 
(k1 and k2) is the rear and front stiffness tire respectively. Mb is the sprung mass, (mf and mr) is the front and rear tire respectively. 
L is the length of the chassis.   Using the above notations, the mathematical relations are derived as follows (see appendix A, B, and C)

State-space solutions

The generalized state-space representation as follow:

     Where M, C, and K are the full mass, damping, and stiffness matrices respectively, x is the vector of states, F is the load vector, y 
is the output vector, and [B] and [C] are rectangular matrices with ones on the desired DoFs positions and zeros everywhere else in 
control engineering, the state space representation is a mathematical model of a physical system as a set of input, output and state 
variables related by first-order differential equations. The state-space means then-dimensional space whose coordinate axes consist 
of a lot of state variables axis. A point in the state space represented by axis. The state space is converting the second-order differen-
tial equations for dynamic system to the first-order state space dynamic system which has a certain advantage over the second-order 
form descriptions. A seconder equation can be transformed into a first adequation and vice versa. The State-Space block implements 
a system whose behavior is defined as the following where (n) the number of Dof, (m) the number of inputs, and (r) the number of 
outputs as shown in figure (4). 

 n m

n A B

r C D

Figure 4: The State-Space Block Matrix Dimension.

MATLAB Solution to LQR problems

    Control systems are designed for the spacecraft [16], by using quadratic performance indexes with MATLAB. the minimization of 
quadratic performance indexes which are used for the system design is based on MATLAB has a command that gives the solution to 
the associated algebraic Riccati equation (ARE) and determines the optimal control gain matrix [16].

“LQR” Command for Solving ARE (Appendix A)

     The continuous-time, linear, quadratic regular problem and the associated Riccati equation are solved bythe MATLAB command “ 
LQR (A, B, Q, R)”. The previous command calculates the optimal feedback gain matrix “K” such that the feedback control law and min-
imizes the performance subject to the constraint equation [16] as following.
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[P, S, K] = lqr (A, B, Q, R) = lqr (A, B, C’* C, R)

Where (Appendix A): 

P = Positive definite symmetric matrix 
S = Poles of the system 
K = Optimal control gain

Where: 
Q= diagonal one matrix has dimension equal number degree of freedom mutably two (Appendix A)

Results 

Figure 5: Relation Between time & displacement for system.

Figure 6: Relation between time & acceleration for system.

Figure 7: Relation between time & displacement for beam.
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Figure 8: Relation between time & acceleration for beam.

Figure 9: Relation between time & displacement for beam1.

Figure 10: Relation between time &acceleration for beam 1.
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Figure 11: Relation between time & displacement for beam 2.

Figure 12: Relation between time &acceleration for beam 2.

Discussion

     We get the mass matrix and stiffness matrix by using the finite element method and using state space to get a dynamic response. 
By finite element method theory, we can say the error reduces, as increasing the number of elements improves the accuracy of the 
solution. the figures (5-12)   show the results obtained for homogenous boundary conditions for the system at all and chassis only. It 
appears from the figures the passive system (continuous line) greater than the active system (dashed line) by three times. The trans-
ferring from a passive to an active system is satisfied by the userthe value of Q & R Parameter Using Matlab code to do the program 
(Appendix A). the finite element method and state-space which can be aid the designer to make the system activating assuming the 
beam are elastic by minimized the amplitude of fluctuation and its time by changing the parameter value of Q & R.  Fig. (5) and fig. (6) 
shows the relationship between time, displacement, and time, acceleration for the system. Note the amplitude of displacement and 
acceleration reduces depending on the control of the system.  Fig. (7) and fig. (8) show the relationship between time, displacement 
and time, acceleration for the beam (chassis) only. the amplitude of displacement and acceleration reduces depending on the control 
of the system.  Fig. (9) and fig. (10) show the relationship between time, displacement, and time, acceleration for the first element of 
the beam. Note the amplitude of displacement and acceleration reduces depending on the control of the system.  Fig. (11) and fig. (12) 
show the relationship between time, displacement and time, acceleration for the second element of the beam. Note the amplitude of 
displacement and acceleration reduces depending on the control of the system.  

Conclusions

The present paper objective analysis the suspension system behavior for a half-car model which influenced by road irregular. The dis-
placement of the half-vehicle with tire via Matlab depended upon the finite element method and state-space control. Considered under 
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load at the contact point between the tire and the road. Get the mass matrix and stiffness matrix for chassis by finite element method. 
Graphs are presented and discussed the displacement and acceleration at passive and active cases for a system at all and chassis as two 
elements. Note the system under control and we can reach to our aim of car control and comfort of the ride.
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Appendix A

bB=alpha*massB+ beta*stiffB; %   -----damping matrix ---- 
IB=eye(GDof-2); 
AB11=zeros(GDof-2); 
AB12=IB; 
MASSB=inv(massB); 
AB21=-MASSB*stiffB; 
AB22=-MASSB*bB; 
BB11=zeros(GDof-2,1); 
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BB21=MASSB*forceB; 
CB11=eye(1,GDof-2); 
CB12=zeros(1,GDof-2); 
AB=[AB11 AB12;AB21 AB22]; 
BB=[BB11;BB21]; 
CB=[CB11 CB12]; 
D=[0]; 
GB = ss(AB,BB,CB,D); 
cGB = canon(GB); 
Q=eye(GDof+ 2); 
R=[1]; 
[k2,s2,e] = lqr(AB,BB,Q,R); 
GBk2 = ss(AB-BB*k2,BB,CB,D); 
cGBk2 = canon(GBk2); 
t = [0:0.01:30]; 
u=0.01*ones(size(t)); 
% u = 0.1*sin(pi*t); 
figure; 
[Y2,X]=lsim(cGB,u,t); 
[Y3,X]=lsim(cGBk2,u,t); 
h=plot(t,Y2,’b’,t,Y3,’r--’); 
set(h(1),’linewidth’,0.8); 
set(h(2),’linewidth’,1.5); 
xlabel(‘time (sec.)’); 
ylabel(‘dis.of beam (m)’); 
legend (‘passive system’,’active system’); 
title (‘figure(7) relation between time & dis. for beam’); 
n=3001; 
for i=2:n 
Y2dot(i)=Y2(i)-Y2(i-1)/t(i)-t(i-1); 
Y2dotdot(i)=Y2(i)-Y2(i-1)/(t(i)-t(i-1))^2; 
Y3dot(i)=Y3(i)-Y3(i-1)/t(i)-t(i-1); 
Y3dotdot(i)=Y3(i)-Y3(i-1)/(t(i)-t(i-1))^2; 
end 
vel2=Y2dot; 
vel3=Y3dot; 
acc2= Y2dotdot; 
acc3= Y3dotdot; 
%   figure (5); 
%   h=plot(t,vel2,’b’,t,vel3,’r--’); 
%  set(h(1),’linewidth’,0.8); 
%   set(h(2),’linewidth’,1.5); 
%  xlabel(‘time (t)’); 
%   ylabel(‘vel. of beam (m/t)’); 
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figure; 
h=plot(t,acc2,’b’,t,acc3,’r--’); 
set(h(1),’linewidth’,0.8); 
set(h(2),’linewidth’,1.5); 
xlabel(‘time (sec.)’); 
ylabel(‘acc. of beam (m/t^2)’); 
legend (‘passive ‘,’active’); 
title (‘figure(8) relation between time & acc. for  all beam’);
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