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Abstract

Connectome generally refers to the macroscale connectivity between anatomical areas of the brain to mesoscale connectivity
between neurons to synaptic connectivity at the microscale level. Studies has implicated macroscale connectomes in function-
al behaviours. Although macroscale connectomes are likely to affect functions via mesoscale connectomes, this has not been
demonstrated. Recently, mesoscale connectomes of male and hermaphrodite Caenorhabditis elegans have been published. Here,
we simulate computationally the mesoscale connectomes of male and hermaphrodite C. elegans to examine differences in infor-
mation processing. Our results show that the number of significantly differently neurons (n = 28, p-value < 0.05) is significantly
higher than random (p-value = 0.00468), suggesting potential differences in information processing between male and her-

maphrodite C. elegans. Hence, mesoscale connectome differences may result in information processing differences.

Introduction

Connectome was first defined by Sporns et al. [1] as the connectivity map of neurons in the brain and calls for the assembly of the
human connectome. It an important tool for neurobiological research [2] as it is instrumental in the study of neural functions [3].
However, connectomes can also refer to varying resolutions of connectivity - from connectivity between anatomical areas, also known
as macro-scale connectome [4]; to connectivity between individual neurons or cellular level, also known as meso-scale connectome
[5]; to connectivity at the synapse level, also known as micro-scale connectomes [6]. Since then, connectomes of different organisms
have been assembled. These include the roundworm Caenorhabditis elegans [7], the fruit fly Drosophila melanogaster [8], retina [9]
and visual cortex [10] of mouse, and human [11]. There are many clinical applications of connectomes [12]; such as, understanding

psychiatric [13] and neurodegenerative [14] disorders.

Recently, Bian et al. [15] examined 79 first-time stroke patients with hemiplegia and found that connectomes obtained from mag-
netic resonance imaging (MRI) are related to post-injury functional outcomes. Rutherford et al. [16] examined mother-infant bonding
and found that changes in MRI-based connectomes across the postpartum period were associated with changes postpartum bonding.
Gou et al. [17] examines MRI-based connectomes and found differences between the connectomes of patients with or without mi-
graine. These studies suggest that connectomes are related to information processing in the neural network [18, 19], differences in

processing speed [20] and behaviour [21-24]; which can be collectively considered as “connectome basis of information processing”.

However, current studies associating connectomes to functions used macroscale connectomes. Although it is plausible to conceive
that macroscale connectomes affects functions via mesoscale connectomes and eventually via microscale connectomes, this has not

been demonstrated. Recently, mesoscale connectomes of male and hermaphrodite C. elegans have been published [7], which is a re-
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source to examine biologically relevant neuronal information processing at the mesoscale. In this study, we examine the information
processing differences by computer simulation of the mesoscale connectomes of male and hermaphrodite C. elegans. Our results show
that 28 out of 290 neurons common to male and hermaphrodite are significantly different (p-value < 0.05). The number of significantly
differently neurons (n = 28) is significantly higher than random (p-value = 0.00468), suggesting potential differences in information

processing between male and hermaphrodite C. elegans. This result supports connectome basis of information processing.
Materials and Methods

Connectome. Male and hermaphrodite connectomes of C. elegans were obtained from the male chemical adjacency matrix and her-
maphrodite chemical adjacency matrix, respectively; which corresponds to Supplementary Information 5 of Cook et al. [7] July 2020
corrected version. The neuronal connectivity was binarize into presence or absence of connections from the weights (accounting for
both the number of synapses and the sizes of synapses) of connections. The connectivity matrices were used to generate as simulat-
able model of male and hermaphrodite connectomes separately in Brainopy [25]. The neurons for each connectome were added using
Brainopy.addNamedNeuron function. Pairs of neurons were linked using Brainopy.stapleNeurons function. A hypothetical neurotrans-

mitter X was defined as the only neurotransmitter.

Simulation. To run the simulation, the hypothetical neurotransmitter X was set to a value of 10 for every synapse, which mimic
drenching the entire brain in exogenous neurotransmitter. The connectome executed for the number of cycles determined by twice the
furthest path between a common sensory neuron and a common head neuron as determined using shortest path function in NetworkX
[26]. Default parameter of 1% random variation of neurotransmitter value in Dendrite Modulating Function, Neuron Modulating Func-
tion, Axon Modulating Function, and Synaptic Modulating Function of Brainopy [25] was used. After the completion of determined

number of cycles, the values of hypothetical neurotransmitter X in each neuron were obtained. 20 replicates were performed.

Data Analysis. The values of hypothetical neurotransmitter X in 290 common neurons (comprising of 18 common head motor neu-
rons, 80 common interneurons, 20 common pharynx neurons, 82 common sensory neurons, 19 common sublateral motor neurons,
and 71 common ventral cord motor neurons) across 20 replicates between male and hermaphrodite connectomes are compared using
2-samples t-test assuming unequal variance at 95% confidence. The number of neurons with significantly different hypothetical neu-

rotransmitter X values were tested using randomization procedure [27, 28] as previously described [29, 30].
Results and Discussion

To determine the number of simulation cycles, an analysis of the neuronal connectivity between common sensory neuron and com-
mon head neuron was performed. The mean neuronal jumps between common sensory neuron and common head neuron (n = 1422)
as determined by NetworkX [26] in male is 4.18 with a standard deviation of 1.103 while that of hermaphrodite is 3.51 with a standard
deviation of 0.737 (Table 1, Figure 1); which is indicative of the mean number of interneurons [31]. Both the mean (t-test p-value
= 3.66E-74) and variance (Fligner-Killeen test p-value = 0.0133) are statistically significant. The furthest path between a common
sensory neuron and a common head neuron in male connectome and hermaphrodite connectome are 8 and 5 respectively. Hence, the

number of cycles for simulation in male connectome and hermaphrodite connectome are 16 and 10 respectively.
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Male | Hermaphrodite

Average 4.18 3.51
Standard Deviation | 1.103 0.737
Minimum 2 2

Q1 3 3
Median 4 4

Q3 5 4
Maximum 8 5

Table 1: Statistics of Male and Hermaphrodite Connectomes. Pairwise number of neuronal jumps between common sensory
neuron and common head neuron were tabulated and summarized. The furthest path between a common sensory neuron and

a common head neuron in male connectome and hermaphrodite connectome are 8 and 5 respectively.
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Figure 1: Path Length Between Common Sensory Neurons and Common
Head Motor Neurons. Chi-Square p-value = 1.58E-125 using 2-8 path
lengths and male distribution as expected distribution.

Our simulation results suggest that the number of common neurons between male and hermaphrodite connectomes showing
significant differences (2-samples t-test p-value < 0.05) is 28 out of 290 neurons (9.7%; Figure 2 and 3, Table 2). Using randomization
procedure [27-30], the mean number of significantly difference neurons is 26.425 (n = 40 randomized replicates) with standard error
of 0.5249. Hence, the number of 28 common neurons between male and hermaphrodite connectomes showing significant differences
is statistically significant (t-statistic = 3.001, df = 39, p-value = 0.00468).

While this may be a result of the intraneuronal gap between males and hermaphrodites (average of 4.18 in males versus 3.51 in
hermaphrodites), further study is required. However, our results are consistent with experimental studies demonstrating behavioural
differences between male and hermaphrodite C. elegans. Macoskom et al. [32] found that males and hermaphrodites exhibit differ-
ent attraction to hermaphrodite pheromones. Loxterkamp et al. [33] found that although males and hermaphrodites exhibit similar
spontaneous movement or slow and sustained behaviours such as chemotaxis, they differ in quick response to mechanical and che-
mosensory stimuli. This is further supported by Tanner et al. [34] demonstrating that males show a delayed food leaving compared
to hermaphrodites when exposed to repulsive odours. Collectively, these suggest potential differences between the information pro-
cessing between male and hermaphrodite C. elegans at the level of mesoscale connectome; thereby, supporting the connectome basis

of information processing.
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Figure 2: Cumulative Frequency of p-values. 9.7% (n = 28) of the neurons are

significantly different between male and hermaphrodite connectomes.

Cord Motor

Neuron Group Number of | Number of Significantly Name of Significantly Different Neurons
Neurons Different Neurons
Common Head Motor 18 0 (0.0%) (Not Applicable)
Common Interneuron 80 6 (7.5%) AIMR, AINL, ALA, AVDR, AVHR, AVL
Common Pharynx 20 1 (5.0%) M2L
ASGR, ASHL, ASIR, ASJL, AS]R, ASKL, AWBR,
Common Sensory 82 13 (15.9%)
CEPVL, IL2DR, PLML, PLMR, URYDLT, URYDR
Common Sublateral
19 1 (5.3%) SMBVL
Motor
Common Ventral
71 7 (9.9%) AS03, VA06, VA09, VA10, VB03, VD08, VD12

Table 2: List of 28 Neurons Significantly Different Between Male and Hermaphrodite Connectomes.

(A) Interneurons / Pharynx / Sublateral Motor
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Figure 3: Mean Neurotransmitter Values Between Male and
Hermaphrodite Connectomes.

Conclusion
Differences in mesoscale connectomes may result in differences information processing.
Supplementary Materials
Scripts and data files for this project can be downloaded at https://bit.ly/ConnectomeCEL.
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