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Abstract

     Admixtures of two relatively distinct populations; as a result of clashing, mixing, and merging; can drastically affect its popu-
lation genetics. Studies have suggested that admixed populations are instrumental in establishing novel populations. Computer 
simulations is a common method to study population admixtures. Although it is plausible to study the emergence of novel 
populations from simulated admixed populations, studies in this area have been sparse. Here, we attempt to demonstrate the 
emergence of novel populations from admixed populations using simulation. Our results show that all admixed populations 
have the potential to result in the emergence of novel populations despite large majority (up to 90%) of one of the two source 
populations. The null hypothesis of no significant allelic changes can be rejected with a p-value of 5.3E-05. Therefore, our simu-
lation study supports current studies suggesting that admixed populations are instrumental in establishing novel populations.
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Introduction

     Mixing of populations resulting in genetic admixtures is an important process in evolution [1] as it is one of the fastest evolutionary 
processes to affect the genetic structure of a population [2] and have been observed in many species; including, human [3], fish [4], 
cat [5], cattle [6], and moth [7]. This can lead to a rapid genetic diversification, which may result in rapid reduction of detrimental 
mutation load [8], improved health [9, 10], and disease resistance [11]. There are many recent studied examples of human population 
admixtures [12-14]; including, Denisovans and Neanderthals leading to Asian population [15], hunter-gatherers and Neolithic farm-
ers in Iron Age Europe [16], northern and southern China [17], Latin America [18], and the entire Asia at large [19]. There are also 
studies suggesting that admixed populations are instrumental in establishing novel populations [20-22].
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    One of the recent methods to study population admixtures is using simulations and comparing simulation results to laboratory 
or empirical findings [15, 23-25]. The two main approaches of simulation [26] are forward time simulation, where the evolution of 
initial population is tracked under various genetic models over multiple generations; and backward time (also known as coalescent 
simulation), where the simulation begins with the current time and work backwards into history. Hence, it is plausible to study the 
emergence of novel populations from simulated admixed populations but studies in this area have been sparse as recent simulation 
studies mainly focus on the admixture models [27-31] or determining population history [29, 31-34] and adaptations to novel envi-
ronments [35].

     Therefore, direct evidence suggesting that emergence of novel populations can originate from admixed populations is lacking. In 
this study, we examine the genetic structure and possible novel population emergence of using various admixtures from two simulated 
populations. Our results show that all admixtures have the potential to result in the emergence of novel populations, which is consis-
tent with current studies [20-22].

Methods

    Ancestral tribe definition. Mixtures of two ancestral populations, Tribe A and Tribe B, we simulated for 100 generations using 
Island [36], which had been used in previous studies [37, 38]. Thirty marker genes (M1 to M30) were defined for both tribes and 10 
alleles (A1 to A10) were defined for each marker gene. Ancestral Tribe A consisted of organisms with high proportion of A1 to A5 
(19.8% of each allele) with low proportion of A6 to A10 (0.2% of each allele) for all 50 marker genes. Inversely, ancestral Tribe B con-
sisted of organisms with low proportion of A1 to A5 (0.2% of each allele) with high proportion of A6 to A10 (19.8% of each allele) for 
all 50 marker genes. Each ancestral tribe consisted of 10 thousand individuals. Specification of allelic compositions and commands for 
generating for ancestral Tribes A and B, as well as the generated ancestral Tribes A and B, are provided in supplementary materials.

    Simulation and analysis. Ten admixed source populations were generated by randomly selecting individuals from the ancestral 
populations in the following proportions: (a) 10% Tribe A 90% Tribe B, (b) 20% Tribe A 80% Tribe B, (c) 30% Tribe A 70% Tribe B, (d) 
40% Tribe A 60% Tribe B, (e) 50% Tribe A 50% Tribe B, (f) 60% Tribe A 40% Tribe B, (g) 70% Tribe A 30% Tribe B, (h) 80% Tribe A 
20% Tribe B, and (i) 90% Tribe A 10% Tribe B. Each admixed population consisted of 1000 individuals. Ten replicates of one hundred 
generations were simulated for each admixed source population and the population size was kept constant at 1000 individuals during 
simulation. Normalized Chi-Square statistic [37], which is the quotient of Chi-square statistic and number of alleles, was used to ana-
lyze the simulated populations based on the expected allelic frequencies of ancestral Tribe A and Tribe B separately. The commands 
for simulation and analysis are provided in supplementary materials.

Results and Discussion

     Population genetics changed over time in 1:1 admixed population suggesting potential emergence of novel populations. We 
hypothesized that the population genetics of 1:1 admixed population should be relatively stable. However, regression analysis on 110 
data points (11 generations of 10 replicates) yields the following regression equation: Normalized Chi-Square Statistic = 22.116 Gen-
eration + 4924.3 when using the allelic frequencies of Tribe A as expected frequencies (Figure 1A) and Normalized Chi-Square Statistic 
= 22.572 Generation + 4828.3 when using the allelic frequencies of Tribe B as expected frequencies (Figure 1B). Both gradients are 
significantly larger than zero (p-value ≤ 12E-13), which suggests that the population structure is deviating with increasing generations 
from the expected population genetics of either Tribe A or B. This implies that the null hypothesis expecting that the population ge-
netics of 1:1 admixed population should be stable with respect to a control population is rejected and suggests the potential of novel 
population emergence with 1:1 admixed population.

     It may be plausible that the pseudorandom number generator used in Island [36] may have an impact on the simulation. An analysis 
of the codes of Island [36] shows that the pseudorandom number generator is from random module in Python Standard Library, which 
implements Mersenne Twister [39], which has a period of 2**19937-1. Mersenne Twister has been shown by several studies to be suit-
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able for most Monte Carlo simulation studies [40-42]. The same random module was used in other tools; such as, DOSE [43, 44]; where 
null hypotheses have been reported [45, 46]. Although there has been reported cases where Mersenne Twister [42, 47-49] were found 
not to be suitable, this is unlikely the case as a recent study using Island [36] has also demonstrated instances of null hypothesis [37].

Figure 1: Normalized Chi-Square Statistic on 1:1 (50% Tribe A, 50% Tribe B) Admixed Population 
Across 100 Generations. Panel A uses the expected allelic frequencies of Tribe A as expected fre-

quencies. Panel B uses the expected allelic frequencies of Tribe B as expected frequencies.

     Potential emergence of novel populations from all admixtures. Given that novel populations may emerge from 1:1 admixture, 
it is plausible to conceive potential emergence of novel populations from all non-1:1 admixed population. Using the allelic frequency 
of Tribe A as the standard, our results show a significant decrease (r-square = 0.8148, t = -5.549, p-value = 8.61E-4) in the gradient 
the mean normalized Chi-Square statistic across 100 Generations with increasing proportion of Tribe A (Figure 3A). The same trend 
is observed when the allelic frequencies of simulated populations were matched with the expected allelic frequencies of ancestral 
Tribe B (r-square = 0.9846, t = -21.179, p-value = 1.32E-07; Figure 3B). This suggests that all admixed populations deviate from their 
respective ancestral populations with increasing generations. Furthermore, this deviation from ancestral population is observed even 
at large majority - 90% of Tribe A or 90% of Tribe B.

     An analysis of the allelic frequencies (Table 1) shows that average of 6.78% of the alleles show significant changes (p-value < 0.05) 
between the 1st and 100th generation, with a standard deviation of 1.749%. Hence, the null hypothesis of no significant allelic changes 
can be rejected with a p-value of 5.3E-05. In addition, the highest percentages of significant allelic changes are observed at 90% of 
Tribe A or 90% of Tribe B, which further supports that all admixed populations deviate from their respective ancestral populations 
with increasing generations with potential emergence of novel populations. This is consistent with studies suggesting that admixed 
populations are instrumental in establishing novel populations [20-22].



Citation: Maurice HT Ling., et al. “Novel Populations from Simulated Admixed Populations”. Medicon Medical Sciences 4.1 (2023): 09-15.

Novel Populations from Simulated Admixed Populations
12

Figure 2: Mean of Normalized Chi-Square Statistic on Admixed Populations Across 100 Generations. Allelic 
frequencies of Tribe A were used as expected frequencies. Error bars denote standard error. Panel A shows 

10%, and 20% Tribe A. Panel B shows 30%, 40%, and 50% Tribe A, where 50% Tribe A is 1:1 admixture 
population in Figure 1. Panel C shows 60%, and 70% Tribe A. Panel D shows 80%, and 90% Tribe A.

Figure 3: Changes in Gradient of the Mean Normalized Chi-Square Statistic Across 100 Generations. 
Panel A shows with respect to %Tribe A. Panel B shows with respect to %Tribe B.

% Tribe A % Tribe B
Number (Percentage)

Significant Allelic Changes Significant Increases Significant Decreases
10 90 26 (8.67%) 4 (1.33%) 22 (7.33%)
20 80 17 (5.67%) 3 (1.00%) 14 (4.67%)
30 70 18 (6.00%) 4 (1.33%) 14 (4.67%)
40 60 21 (7.00%) 0 (0.00%) 21 (7.00%)
50 50 24 (8.00%) 6 (2.00%) 18 (6.00%)
60 40 13 (4.33%) 3 (1.00%) 10 (3.33%)
70 30 20 (6.67%) 6 (2.00%) 14 (4.67%)
80 20 15 (5.00%) 3 (1.00%) 12 (4.00%)
90 10 29 (9.67%) 4 (1.33%) 25 (8.33%)

Table 1: Number of Significant Allelic Changes from 1st to 100th Generation.
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Conclusion

     Our simulation results support current studies [20-22] suggesting that admixed populations are instrumental in establishing novel 
populations.

Supplementary Materials

     Data files for this study can be downloaded at http://bit.ly/AdmixturePopulations.
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