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Abstract

     Synechocystis sp. PCC 6803 is a potential producer of lipids, alcohols, and biofuels. Genome-scale models (GSM) has been used 
to examine potential knockout to optimize specific metabolite (such as, ethanol) production. Besides from a metabolic produc-
tion perspective, GSMs can also be used examine the effects of genes from the perspective of genotype-phenotype relationship. 
However, most GSMs are reaction-based rather than gene-based. Hence, GSMs can be used for reactome-phenome mapping 
where each reaction may be the result of one or more genes. In this study, we examine the reactome-phenome map of Synechocys-
tis sp. PCC 6803 using its GSM model, iJN678, by performing single knockouts to each of its 863 reactions. Our results suggest that 
37.3% to 39.7% (322 to 343 reactions) of the knockouts have minimal impact on the phenome as they were clustered together 
with wildtype phenotype and 53.5% (462 reactions) are essential. The rest of the 58 to 79 reactions can be clustered into 9 to 33 
phenotypic clusters. Moreover, the fluxome variation within wildtype cluster is significantly larger than that of essential reaction 
cluster (t ≥ 3.26, p-value ≤ 1.3E-3). This suggests that individual reaction knockout may have measurable effects on the fluxes; 
which may be useful in metabolic engineering.
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Introduction

    The cyanobacterium Synechocystis sp. PCC 6803 [1] has been explored for used in biofuel production due to its phototrophic [2] 
property. This strain has been explored for lipid [3] and ethylene [4] production. Computational modelling and simulation are import-
ant to explore suitability of organisms and evaluate engineering approaches to increase production of biofuels [5-8]. Genome-scale 
metabolic models (GSMs), which is based on steady-states of metabolites [9], have been used inform many metabolic engineering 
requirements [10, 11]. For example, Zhang et al. [12] used GSM to examine bottlenecks in ethanol production by Caldicellulosiruptor 
bescii while Nguyen and Lee [13] used GSM to design improvement strategies to increase the conversion of methane to putrescine by 
Methylomicrobium alcaliphilum. 

     Underpinning these computational approaches is the relationship between genotype and phenotype, commonly known as geno-
type-phenotype relationship [14-17], where genomic perturbations (such as knockouts) results in changes in the fluxome. Fluxome 
can be defined as the set of metabolite conversion rates in a metabolic network [18-20]. This results in changes in the metabolome, 
leading to phenotypic changes. Conversely, GSMs can be useful to identify genotype-phenotype relationships [21]. 

     In this study, we aim to elucidate the genotype-phenotype relationship of Synechocystis sp. PCC 6803 using its GSM, iJN678 [22]. 
However, GSMs are based on reaction stoichiometries [23]; hence, reaction is the atomic unit rather than gene [24]. Therefore, GSM-
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based reactome-phenome Synechocystis sp. PCC 6803 is elucidated where each reaction is encoded by one or more genes. Our results 
show that 37.3% to 39.7% (322 to 343 reactions) of the knockouts have minimal impact on the phenome and 53.5% (462 reactions) 
are essential with the rest of the 58 to 79 reactions clustered into 9 to 33 phenotypic clusters.

Materials and Methods

     GSM for Synechocystis sp. PCC 6803, iJN678 [22], was obtained from BiGG database [25]. Growth rate on native media given as proxy 
as output from the objective function [26] and fluxes after flux balance analysis [27] using Cameo [28], which was available via cam-
eo-fba command from AdvanceSyn Toolkit [29]. The entire set of predicted fluxes obtained from a GSM is known as a predicted flux-
ome. Single reaction knockouts [21] were performed using cameo-mutant-fba command. The number of phenotypic clusters were 
determined by elbow method on distortion score [30], Davies-Bouldin score [31-33], and Silhouette index [34] from SeqProperties 
[35]; on fluxes from each reaction knockout. Variations within a cluster was calculated as root mean square error (RMSE) between a 
predicted fluxome and an average fluxome (defined as the set of average fluxes of each reaction within the cluster) of the same cluster 
which had been used in previous genomic studies [36, 37]. 

Results and Discussion

     GSM for Synechocystis sp. PCC 6803, iJN678 [22], was obtained from BiGG database [25]. The model, which is based on Accession 
number BA000022.2, consists of 622 genes, 795 metabolites, and 863 reactions. Predicted fluxes from individual reaction knockout, 
defined as deduction of the corresponding reaction flux to zero, were used to analyse reactome-phenome mapping.

     Our knockout simulation results show that the knockouts in iJN678 [22] were clustered into 11 clusters using elbow method on 
distortion score [30] (Figure 1A and Table 1), 29 clusters using Silhouette index [34] (Figure 1B and Table 1), and 35 clusters using 
Davies-Bouldin score [31-33] (Figure 1B and Table 1). However, 37.3% to 39.7% (322 to 343 reactions) of the knockouts have mini-
mal impact on the phenome as they were clustered together with wildtype phenotype. This may be explained by gene compensation 
[38-41] and / or gene redundancy [42-44]. Gene redundancy is when there is more than one gene for the same function, which are 
commonly resulted from gene duplication [45]; whereas gene compensation is when other genes, which may not have the same 
functions, can compensate for the effects of a gene deletion or mutation. This suggests that there may be substantial compensatory or 
redundancy in iJN678 [22]. On the other hand, 53.5% (462 reactions) resulted in no fluxes suggesting that knockout of these reactions 
resulted in lethality; thus, essential reactions. This proportion of essential genes within the genome is within the range of prokaryotes 
surveyed by Gerdes et al [46]. Collectively, these two clusters account for 90.8% to 93.3% of the knockouts, suggesting that single re-
action knockouts is unlikely to result in substantial changes in the fluxome.

     Of the 6.72% (58 reactions) to 9.15% (79 reactions) not clustered into wildtype or no flux (essential reaction) cluster, they can be 
clustered into 9 to 33 phenotypic clusters (Table 1). By combining the remaining 6.72% (58 reactions) to 9.15% (79 reactions) into 
a single “other phenome” cluster (denoted as “Others” in Table 2), our results show that the mean RMSEs of the three clusters are 
significant different using all three measures; namely, Elbow [30] (F = 435, p-value = 1.5E-131), Silhouette [34] (F = 427, p-value = 
1.1E-129), and Davies-Bouldin [31-33] (F = 336, p-value = 1.4E-103). Pairwise t-test (Table 2) suggests that the mean RMSE of any 
two clusters are significantly different (t ≥ 3.26, p-value ≤ 1.3E-3). Hence, the mean RMSE of others cluster is significantly larger than 
the mean RMSE of wildtype cluster (t ≥ 8.08, p-value ≤ 4.1E-11), and the mean RMSE of wildtype cluster is significantly larger than the 
mean RMSE of no flux (essential reaction) cluster (t ≥ 3.26, p-value ≤ 1.3E-3). This suggests that although 37.3% to 39.7% (322 to 343 
knockouts) of the reaction knockouts are clustered together with wildtype, individual reaction knockout may have measurable effects 
on the fluxes; which may be useful in metabolic engineering [10, 11]. 
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Figure 1: Cluster Analysis of Reaction knockouts in iJN678. Panel 
A shows results from elbow method using distortion score. Panel B 

shows the Davis-Bouldin index and mean Silhouette score.

Cluster
Number of Reactions

Elbow [30] Silhouette [34] Davies-Bouldin [31-33]
Wildtype 343 325 322
No Flux 462 462 462
Others-1 2 2 2
Others-2 4 1 1
Others-3 5 5 4
Others-4 3 1 1
Others-5 38 3 3
Others-6 3 3 3
Others-7 1 2 2
Others-8 2 1 1
Others-9 1 1 1
Others-10 0 1 1
Others-11 0 2 2
Others-12 0 29 28
Others-13 0 11 10
Others-14 0 1 1
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Others-15 0 1 1
Others-16 0 1 1
Others-17 0 1 1
Others-18 0 2 1
Others-19 0 1 1
Others-20 0 1 1
Others-21 0 1 1
Others-22 0 1 1
Others-23 0 1 1
Others-24 0 1 1
Others-25 0 1 1
Others-26 0 1 1
Others-27 0 1 1
Others-28 0 0 2
Others-29 0 0 1
Others-30 0 0 1
Others-31 0 0 1
Others-32 0 0 1
Others-33 0 0 1

Table 1: Number of Reactions in Each Cluster for iJN678.

Clustering Method Comparison df
RMSE Statistical Analysis

Mean Variance t-Statistic p-value

Elbow[30]
Wildtype vs No Flux 343 3.3E-3 vs 2.7E-6 8.8E-5 vs 1.5E-12 6.44 4.05E-10*
Wildtype vs Others 59 3.3E-3 vs 9.2E-2 8.8E-5 vs 7.2E-3 8.08 4.06E-11*
No Flux vs Others 59 2.7E-6 vs 9.2E-2 1.5E-12 vs 7.2E-3 8.38 1.23E-11*

Silhouette [34]
Wildtype vs No Flux 325 2.5E-4 vs 6.9E-6 1.5E-6 vs 1.5E-12 3.72 2.31E-4*
Wildtype vs Others 77 2.5E-4 vs 8.1E-2 1.5E-6 vs 6.1E-3 9.13 6.63E-14*
No Flux vs Others 77 6.9E-6 vs 8.1E-2 1.5E-12 vs 6.1E-3 9.16 5.84E-14*

Davies-Bouldin 
[31-33]

Wildtype vs No Flux 172 8.6E-5 vs 2.7E-6 1.1E-7 vs 1.5E-12 3.26 1.33E-3*
Wildtype vs Others 80 8.6E-5 vs 7.9E-2 1.1E-7 vs 6.0E-3 9.21 3.44E-14*
No Flux vs Others 80 2.7E-6 vs 7.9E-2 1.5E-12 vs 6.0E-3 9.22 3.29E-14*

Table 2: Comparison of Clusters using RootMean Square Error (RMSE).Asterisk in p-value denote significance (p-value < 0.05).

Conclusion

     GSM iJN678 based reactome-phenome mapping results suggest that 37.3% to 39.7% (322 to 343 reactions) of the knockouts have 
minimal impact on the phenome and 53.5% (462 reactions) are essential with the rest of the 58 to 79 reactions clustered into 9 to 33 
phenotypic clusters. Fluxome variation within the wildtype cluster suggests that individual reaction knockout may have measurable 
effects on the fluxes.

Supplementary Materials

     Data files for this study can be downloaded from https://bit.ly/Reactome-Phenome-iJN678. 

https://bit.ly/Reactome-Phenome-iJN678
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