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Abstract

     In a Real Time System, when a high priority task is scheduled, it preempts ongoing lower priority tasks and sometimes it pre-
empts even the kernel too. In normal cases, the time needed for the preemption is too small and hence is not considered in task 
scheduling. But, in some mission critical hard real time systems, even a small fraction of a second should be taken into account as 
it could affect the deadline. This research work proposes two models - embedded model and software model, among which the 
latter has been used for the experiment that calculates the kernel preemption time. The hardware model consists of a triangular 
wave generator called TRIANG that takes timer values from real time tasks and sends outputs to a comparator module. Finally, 
the comparator compares the time differences, and hence, calculates the kernel preemption time. Whereas the software model 
uses the RT-Linux architecture in which device drivers are used instead of hardware components. A high precision timer clock is 
also used to measure the task release times.

     The results from the experiments show that the release time jitter due to the kernel preemption is found to be fluctuating in 
the range of -94 and +93 microseconds in 3% of the cases. So, the kernel preemption time for the hard and mission critical real 
time systems is taken to be less than 99 microseconds. Whereas 85% of the cases have release time jitters of single digit only. So, 
the kernel preemption time in average case is considered to be less than 9 microseconds.
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Abbreviation

Acronym Full form

API Application Programming Interface
GPES GPGPU Preemptive Execution System
GPGPU General-Purpose Graphics Processing Unit 
GPU Graphics Processing Unit
HRT Higher Resolution Timer
IETS Instruction Execution Time Simulator
KPT Kernel Pre-emption Time
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OS Operating System
RT Real Time
RTOS Real Time Operating System
RTS Real Time System
TMT Time Measuring Tool
TRIANG Triangular Wave Generator
WCET Worst-Case Execution Time

Introduction

    A Real Time System is in general categorized into three types- Hard, Soft and Firm Real Time System according to the usefulness 
function on the basis of their timing constraints i.e. deadline [1]. Hard RTS is subject to crash or may cause physical hazards upon 
not meeting the deadline. A mission critical system, for example, always has a hard deadline [2]. In order to schedule the tasks of the 
system, all parameters including temporal and resource parameters for task preemption should be known well in advance [3]. The 
correctness of the timing measurements is vital in this regard because task should be executed exactly at the one time (considering the 
task execution time and delays due to other overheads) in order to meet the deadline at the given time [4].

     A few studies on measuring the time of task switching, mode changes and context switching have shown that schedulability test of 
a real time task with a hard deadline is affected by these system overheads [5-7]. So, the question is obviously valid as to whether a 
kernel preemption time in a real time or embedded system can affect the schedulability test [8]. The failure and tragic-crash of some 
satellites and spacecrafts have widened the scope of the study like this one [9-11].

     Real time tasks often require task priority changes and preemption of tasks for the successful execution i.e. meeting deadlines effec-
tively [12]. So it is recommended that an operating system with preemptible kernel be used for any real time system. The capability of 
kernel preemption gives rise to efficiency in scheduling real time tasks and successfully completing them in the deadline [13].

     Preemptible kernels provide for one user process to be preempted in the midst of a system call so that a newly awaken higher-pri-
ority process can run [14]. This preemption cannot be done safely at arbitrary places in the kernel code. One section of code where 
this may not be safe is within a critical section, which must not be executed by more than one process at the same time [6]. In some 
OSes, critical sections are protected by spin locks and the preemptible kernel alters the call to spin locks by preventing the preemption, 
and allows preemption in other sections [15]. When a higher-priority process awakens, the scheduler will preempt a lower-priority 
process in a system call if the system call code has not indicated, via the modified spin-lock code, that preemption is not possible [16].

    In addition, with a preemptible kernel, breaking locks to allow rescheduling is simpler than with the preemption (low-latency) 
patches [17]. If the kernel releases a lock and then re-acquires it, when the lock is released, preemption will be checked for. When a 
spin lock is acquired, the counter is incremented. When a high-priority process awakens, the scheduler checks to see whether the pre-
emption counter indicates, by having the value zero, that preemption is allowed [18]. By employing a counter, the mechanism works 
when locks are nested. With this mechanism, however, any spin-lock-held critical section prevents preemption, even if the lock is for 
an unrelated resource [19]. 

    A typical real-time system has tasks that must be executed in a deterministic and real-time manner [20]. An idea is to design a 
sub-kernel in such a way that the real-time portion of the application is handled separately by this portion [21]. Thus, these real-time 
sub-kernels deliver an API for tasking, interrupt handling and communication with processes. The main operating system is sus-
pended while the sub-kernel’s tasks run i.e. dealing with an interrupt - specially hardware interrupt, by not allowing to disable the 
interrupts [22].



Citation: Roshan Chitrakar., et al. “Measurement of Kernel Preemption Time of Real Time Operating Systems". Medicon Engineering Themes 5.6 
(2023): 04-15.

Measurement of Kernel Preemption Time of Real Time Operating Systems
06

    Therefore, this work is focused in designing a method of measuring kernel pre-emption time of a real time operating system by 
utilizing a real time sub-kernel of RTLinux. The main contribution of the research is proposition models that are used to measure the 
Kernel Preemption Time of RTOS. 

Related Work

     Many research works have been done regarding measurement and time analysis of different events or processes of real time operat-
ing systems. Faller, Newton has proposed a method that does not require an external measuring tool for collecting information about 
context-switching and interrupt-acknowledge times in UNIX-like operating systems. This paper has discussed the probable sources 
of latency and illustrated with actual results obtained by the application of the method to TROPIX, a real-time UNIX-like operating 
system, running on a Motorola 68010-based computer [23]. In another research work, Holenderski et al. have presented a tool called 
“Grasp” that traces, visualizes and measures the behavior of real-time systems by also providing a simple plugin infrastructure for 
customizing them. The Grasp has been demonstrated based on experiences during the development of various real-time extensions 
for the commercially available μC/OS-II real-time operating system [24]. Zhou et al. have presented an efficient GPGPU preemptive ex-
ecution system (GPES), which combines user-level and driver level runtime engines to reduce the pending time of high-priority GPGPU 
tasks that may be blocked by long-freezing low-priority competing workloads. They have demonstrated that GPES is able to reduce 
the pending time of high-priority tasks in a multitasking environment by up to 90% over the existing GPU driver solutions, while in-
troducing small overheads [25]. Marchesotti et al. has studied a major sources of unresponsiveness in the kernel, namely the presence 
of non-preemptible code sections, and have quantified its effects with a series of micro-benchmarks. They have identified which Linux 
kernel’s modules can cause erratic behavior with respect to the responsiveness of the Linux kernel to hardware interrupts [26].

     Stärner and Lars has presented a simulation framework suitable for examining the cache interference cost in preemptive real-time 
systems. They have shown a significant performance gap between the best- and worst-case execution times and that the worst-case 
performance of some software modules was found to be more or less independent of the cache configuration [27]. Similarly, Blackham 
et al. have presented a WCET analysis of seL4, world’s first formally-verified operating-system kernel. They concluded that by fea-
turing machine-checked correctness proofs of its complete functionality, seL4 is an ideal platform for safety-critical and time-critical 
systems. They also concluded that sel4 has created a foundation for integrating hard real-time systems with less critical time-sharing 
components on the same processor, supporting enhanced functionality while keeping hardware and development costs low [28]. In 
a similar work, De Oliveira et al. have traced a parallel between the theory of response-time analysis and the abstractions used in the 
Linux kernel. They have first identified the PREEMPT_RT Linux kernel mechanisms that impact the timing of real-time tasks and map 
these impacts to the main abstractions used by the real-time scheduling theory. Then, they have described a customized trace tool, 
based on the existing trace infrastructure of the Linux kernel, that allows the measurement of the delays associated with the main 
abstractions of the real-time scheduling theory. Finally, they have used this customized trace tool to characterize the timing lines re-
sulting from the behavior of the PREEMPT_ RT Linux kernel [15].

     Efforts have already been made in the area of measuring the kernel preemption time of real time operating systems. In this course, 
Adam, George K. has performed real-time measurements of Linux kernels with real-time support provided by the PREEMPT_RT patch 
on embedded development devices such as BeagleBoard and Raspberry Pi and proposed a new measurements software. He demon-
strated that the PREEMPT_RT patch overall improves the Linux kernel real-time performance compared to the standard one. The 
reduced worst-case latencies on such devices running Linux with real-time support could make them potentially more suitable for 
real-time applications as long as a latency value of about 160 μs, as an upper bound, is an acceptable safety margin [29].

    But, the problem is still there in recording the exact amount of time involved in just preempting the task or the kernel itself that 
could have been used in executing the real time task otherwise. During the schedulability analysis, more accurate timing calculations 
could be done if all of these timing requirements are known a-priori. Therefore, this study work is focused in designing a technique to 
measure the time spent on non-RT tasks including preemption, task switching and context switching etc and this study also carries an 
experimentation to measure the time spent in kernel preemption by the system.
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    This research work makes use of commonly available RTOS that support kernel preemption and are used in uni-processor envi-
ronment. It makes use of timers and clocks that are used by a Real Time scheduler through number of system calls. It also takes into 
account every time duration spent by a real time operating system in the course of scheduling and preempting a real time task, stealing 
resources from tasks and the kernel preemption time as well. The result of the study could be used in designing any real time or em-
bedded systems - specially in the mission critical systems or any system that has hard deadline.

     Measuring the time of any CPU activity or system activity needs more accurate methods - sometimes may require designing a device 
as well. The core idea of this study work is to suggest a technique as to how the time could be measured accurately in terms of the 
smallest clock level.

Proposed Models

    The conceptual model is based on a uni-processor real time operating system environment. It contains a collection of processes run-
ning, the interrupt activity and the activity of hardware devices. The environment is assumed so robust that any number of any kinds 
of applications can be run concurrently and still performs acceptably.

This study proposes two conceptual models:

1. Embedded model.
2. Software model.

Model 1: Embedded Model 

    There is a device or a software simulator called the TRIANG that generates a triangular sweep wave [30]. Besides, ‘n’ numbers of 
tasks with real time priorities are scheduled. Both the waves and the jobs share the central memory as shown in Figure 1. Obviously, 
the timer is associated with all the tasks and also to the TRIANG. The system calls provided by the RTOS are used to activate timer 
functions.

Figure 1: Embedded Model of the Kernel Preemption Measurement.

     Being the main role of the model, the comparator (either a hardware device or a piece of software) compares real-time task param-
eters and calculates the kernel preemption time as well.

Model 2: Software Model

     This model suggests the same experiment to be carried out twice on the same Operating System - once without the preemption, and 
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the next with the preemption enabled [31]. The main goal of the experiment is to record temporal parameters (e.g. execution time, 
release time etc.) of the jobs in both the cases. The preemption time is calculated as the delay in releasing the jobs in the preemptible 
environment.

Figure 2: Software Model of Kernel Preemption Measurement.

The Embedded model is altered a bit in order to obtain the Software model as show in Figure 2. The triangular wave generator is 
absent here and the comparator is replaced with a software tool to which I have given the name “Time Measuring Tool” that could be 
one of the following:

1. Instruction Execution Time Simulator (IETS).
2. Benchmarking Tool.
3. A Program code written manually.

Instruction Execution Time Simulator

    The calculation of instruction times requires more than just the information supplied in the CPU manufacturer’s data books. It is 
also dependent on memory access times and wait states that are determined by the overall system design. Some companies that fre-
quently design real-time systems on a variety of platforms use simulations programs to predict instructions execution time and CPU 
throughput. Then engineers can input the CPU type, memory speeds, and an instruction mix, and calculate total instruction times and 
throughput.

Benchmarking Tool 

     A readymade tool may be obtained from software houses or a company that is working on time measuring projects. Considerations 
must be taken of different issues like the time taken by the tool itself to activate measuring the time (latency) or the blocking of the tool 
by OS kernel or extra operating overhead plus real time considerations and so on.

A Program Code Written Manually

     Short sections of code can be written to measure timing parameters by reading the system clock before and after the execution of 
the task code. The time difference can then be measured to determine the actual time of execution. Of course, if the code normally takes 
only a few microseconds, it is better to execute several thousand times and then divide the total execution time by the time spent. This 
will help remove any inaccuracy introduced by the granularity of the clock.
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Experimental Model

     Between the two models, the software model was chosen for the experiment while another model is left as a separate research work. 
RTLinux was selected as the OS kernel due to its superiority among others [14].

     The model makes use of virtual devices that are served by device drivers. Unlike any other user given tasks, device drivers are not 
preemptible and therefore any request to the device runs to the completion. One virtual device generates busy looping inside the ker-
nel and the other regulates a periodic task to run inside the kernel [32]. In the course of the completion of the operations in the devices 
through the drivers, it surely preempts the kernel in case of the preemptible kernels. And, in case of non-preemptible kernel, it blocks 
the task in the worst case. Instead of generating enough interrupts from any hardware, this model shown in Figure 3 makes sure that 
a tremendous amount of software interrupts is generated which is sufficient enough to preempt the kernel.

Figure 3: Experimental Model based on RTLinux Architecture.

   The Time Measuring Tool is simulated by the user programs themselves. These programs do specific operations to the devices 
through device drivers. A real time periodic task is also defined, regulated and controlled by these programs. Various system calls are 
used to pass information to the Kernel space and real time parameters to the scheduler.

     The key concept of the model is that it measures the intervals of two consecutive periodic releases of the real time task - giving rise 
to the measurement of the release time jitters due to the kernel preemption delay. Essentially, the measurement is done for a several 
thousand releases of the task. The worst time is considered to be the required measurement.

     The model suggests the same experiment to be carried out once again without the preemption enabled in order to show delays in 
release time due to the interrupt blocking and thus by supporting the previous results [14].

The Higher Resolution Timer in Linux

     The Linux kernel time sub system is built on top of jiffies - the time resolution ranging from 1 ms to 10 ms. An “Open Source Project” 
has tried to improve the resolution by introducing sub jiffies in the jiffy-based clock. In this attempt, a time instance is represented as 
(jiffy + sub jiffy) to give higher resolution in the clock. Jiffies are managed by the common time code, while sub-jiffies are managed by 
arch-specific code as and when necessary. This split in ownership and management causes problems - mainly resulting in convoluted 
code and tricky bugs. There are some other issues like aliasing of the same time instance etc.
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     Jun Sun has proposed a new idea. His idea is to completely revamp the time system with native high resolution from hardware to all 
the way up [33]. The existing jiffy time subsystem can be initially running on top of an emulation layer and later completely removed 
when users of time subsystem move to the new interface. The key of the new idea is sometime called monotonic time. The monotonic 
time is built on top of an abstraction of hardware clock, called tock. At last and the on top of all the clocks is the Wall time, or calendar 
time, is built on top of monotonic time. (See appendices for the code of the timer files “tock.h”, “mtime.h”, and “wtime.h”). The three-lay-
ered notion about time, i.e., tock, mtime and wtime, are simple and yet technically sound. They should satisfy all potential time and 
timer need. It is simple way to provide high resolution. It transforms Linux to a tick-less operating system, making power management 
easier too. The transition path from jiffies to jiffy-less is clear and easy.

    However, there are some disadvantages in this HRT also. 64-bit manipulation is inefficient on 32-bit machines. A couple of tactics 
should lessen this effect, but won’t eliminate it. Therefore, 64-bit operation abstraction is to be used so that those operations can be ef-
ficient on 64-bit machines. Time should be dealt with latch-and-use style to reduce locking need, i.e., transient 64-bit variables should 
be latched into local 64-bit variables and then operations are done to local 64-bit variables. 

    Jiffy-subsystem gets inefficient on the emulation layer. The overhead mainly comes from re-inserting the timer back to the list to 
emulate jiffy interrupts. First of all this overhead is not big. Secondly a couple of things that could help this: make use of tock’s periodic 
alarm, and/or introduce periodic timers in addition to one-shot timers. 

     With the new high-resolution interface it is conceivable system will have more overhead for a lot of timers expiring in a short time of 
period. One possible counter-measure is to allow timer users to specify the resolution they want. A low resolution can be set as default 
system-wide. Timers with lower resolution are coerced to align along their resolution boundaries. 

Timer in the Experiment

     It would be excellent to have the experiment carried out with utilizing the jiffy-less clock as suggested by Jun Sun but this is left for 
another piece of work, as the 64-bit timer has not been tested thoroughly in 32-bit operating systems. This experiment is based on 
“time_bh” and the default tick-based jiffy clock is split into greater resolution that is able to measure the time in terms of microseconds. 

Experimental Detail

     The experiment is designed to measure jitters in release time of a real time periodic task while two virtual device drivers are gener-
ating interrupts inside the kernel [34]. The task has a static priority and is supposed to be released at every n microseconds, where n 
can be set manually in the program code. The hardware is simulated with the help of virtual device drivers. The experiment suite col-
lects intervals between two consecutive instance release times. Additional workload to the system may be working during the testing 
period e.g. MP3 video player, CD burning or CPU intensive processes etc. 

     The experiment is carried out once each in two different kernel configurations - the first with the preemption disabled and the next 
with enabled. This is done just to distinguish the delay due to kernel preemption from the time of blocking of the task. It also makes 
sure that the timing difference is nothing but just because of the kernel preemption in the latter case. The task period is set to have 
10000 (ten thousand) micro seconds; the no. of periods is set to be 5000 (five thousand) times with the fixed priority of 10.

     The experiment is carried out in an IBM compatible computer with the following specifications: - Intel Pentium 1.7 GHz of CPU, 256 
MB of RAM. RedHat Linux 9.0 (Shrike) with Kernel 2.4.20-8 with the real time kernel RTLinux 3.2 Pre 2 was chosen as the operating 
system.

Findings of the Experiment

    The result showed that the periodic real time task with kernel preemption enabled has very less jitters compared to its defined pe-
riod. Among 5000 continuous periods of the task, the differences of two consecutive release times are reported to have less, equal and 
more than the defined period as shown by Table 1: 
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<10000 sec 10000 sec >10000 sec Total
2853 568 1579 5000

57.06% 11.36% 31.58% 100.00%
Table 1: Difference of the Consecutive Release Times.

     The earliest release and the latest release times with the jitters are shown in Table 2.

Release Time Difference Defined Period Jitters Percentage
Min 9906 10000 94 0.94%
Max 10093 10000 93 0.93%

Table 2: Min and Max data observed from the experiment.

     It is interesting observation that the occurrence of the min and max jitters are only once each - contributing only 0.04% of the total. 

Jitters Count Percentage
0 568 11.36%
0-9 4270 85.40%
10-99 162 3.24%
Total 5000 100.00%

Table 3: Categorical distribution of release time jitters.

     Hence, it would be worth looking at the categorical distribution of the jitters measured. All jitters are grouped into 3 (three) cate-
gories: - No jitters at all (0), One digit number (0-9) and two-digit number (10-99). Here is Table 3 showing the occurrences of jitters 
and their percentage with respect the data collected.

Jitters Count Percentage
0 568 11.36%

0-9 4270 85.40%
10-19 94 1.88%
20-29 25 0.50%
30-39 15 0.30%
40-49 14 0.28%
50-59 8 0.16%
60-69 3 0.06%
70-79 0 0.00%
80-89 1 0.02%
90-99 2 0.04%
Total 5000 100.00%

Table 4: Release Time Jitters categorically broken-down.

     We can also look at the more categorical breakdowns as shown in Table 4. We can see in the table that most of the jitters are fluctu-
ating between 10 microseconds whereas very few periods have release time jitters of 50 and more. We also notice that only one or two 
periods are found to have release time jitters of 60 or more.
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Figure 4: Release Time Jitters of 100 Periods.

     All the collected data are shown with the help of a line chart. A number of line charts are prepared with increasing number of data 
collected. All the line charts have data series of “preemption disabled” case also because of the intent of showing the interrupt blocking 
time as well.

Figure 5: Release Time Jitters of the First 1000 Periods.

     The central ideal straight line is the defined period showing the value of 10000 microseconds at each period. The dark line touching 
above the ideal line is the preemptible case and the most curved line represents the non-preemptible case. The graph shown by Figure 
1 shows the 100 collected data. In here, the preemptible case has a uniformity and very less fluctuation at the ideal line at 10000.

    The two graphs Figure 5 and Figure 6 show 1000 (one thousand) and 5000 (five thousand) data respectively. The idea of plotting 
such a successive line graph is to see whether any greater fluctuation is observed gradually at any point. Now, there are a few countable 
amounts of jitters seen during this long period. The dark vertical lines coming up and going down are the points of remarkable jitters.
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Figure 6: Release Time Jitters of all 5000 Periods.

Discussion

     From the experiment carried out, it is seen that the release time jitter due to the kernel preemption is found to be fluctuating in the 
range of -94 and +93 microseconds - the minus sign (-) meaning the earlier release and the plus sign (+) the later release. Unlike in a 
non real time system where average case is calculated, in any real time case, we always consider the worst case. 

    Therefore, the kernel preemption time is accepted to be 94 microseconds. But, from the statistics shown above implies that 85% of 
periods have release time jitters only of less than two digits. So, the kernel preemption time in average case is considered to be less 
than 10 microseconds. However, in mission critical hard real time systems, we cannot ignore even the 3% occurrence of less than 100 
microseconds’ delay.

     In the non-preemptible case, the greater time difference found is due to interrupt blocking of the task by the kernel. This experiment 
distinguishes the delay due to the blocking from the kernel preemption time. The non-preemptible case is only the supporting exper-
iment to the preemptible case.

    Earlier works that used similar models have produced the average Kernel Preemption Time of a few milliseconds only, whereas the 
model proposed in this work has been able to measure the average Kernel Preemption Time of microseconds level. Therefore, the 
novelty of the proposed model has been justified by reducing the Kernel Preemption Time by 10 times.

Conclusion and Future Work

     This research has proposed two models for measuring Kernel Preemption Time of Real Time Operating Systems. An experimenta-
tion has also been carried out using the software model. As a result from the experiment, the KPT for general RT tasks is measured to 
be 9 (nine) microseconds. Whereas, KPT for mission critical RT tasks, it is measured to be 99 (ninety nine) microseconds.

     Here are two further works that can be done as extension of this work viz. (1) Revise and fine-tune the experiment suite to get rid of 
a few cases of more 50 microseconds kernel preemption delay i.e. 14 occurrences. Look at the possibility of reducing the delay of more 
than 10 microseconds; and (2) Carry out a separate experiment as proposed in the Embedded Model. 
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