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Abstract

     The basic matrix algorithms for statement of parallel task in the cloud computing systems are considered in this paper. This 
algorithm is generally based on using the approach of arithmetic-logic relations and forming of recurrent matrixes. Possibility of 
using different error-coding methods for sending the request on parallelization task and receiving the answer is also considered. 
Comparative analyze of corrective ability of RS and convolutional codes is provided. As a result of provided investigations the 
relation for estimation the level of task parallelization is proposed. Choosing of convolutional codes for transmitting the data for 
parallelization the calculation task in cloud systems using of convolutional codes is recommended.
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Introduction

     Using of parallel computing in cloud realization is very important and significant problem in engineering and scientific researches 
now a day. Really, parallel computing’s are widely used for choosing the best engineering solution in the numerical simulation by 
solving the complex equation systems [1]. Such approach is very effective in the different advanced branches of industry, like in-
strument-making, electronics, computer science, medicine and pharmaceuticals, as well as advanced technologies in metallurgy. The 
problem is that theoretical basis of parallel calculations and of forming parallelization task isn’t developed enough, therefore forming 
of novel approaches in this aspect is necessary. The problem of choosing the best error-coding method for transmitting application 
data in cloud network is also very important and it need to find the best solution. Therefore, the subject of this paper is considering 
the novel approach for estimation the level of task parallelization, as well as choosing the best method of error-coding between RS and 
convolutional codes.

The Statement of Considered Problem

     The standard approaches for estimation the level of parallelization of computer tasks is based on well-known Amdahl’s law (1967) 
and Karp-Flatt metric (1990) [1, 2]:
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     where An or Ank – speedup factor, or acceleration on n Central Processor Units (CPU) thread regarding to single one, Amax – maximal 
value of speedup v, k – negative influence of communication channels between CPUs. 

     The overview of the appropriate speedup models was systematically given in [1, 2, 13]. Among them, the following models are usu-
ally applied: Grosch’s Law, Amdahl’s Law, Barsis-Gustafson Law, Karp-Flatt Law and Sun-Ni Law. In some cases, Karp-Flatt Law (1990) 
can be used for estimation of parallelization grade.

     Relations (1) are generally simple, but they aren’t taking into account the complicity of parallelized task and the number of flows, 
which can be parallelized. Therefore, in the manual book [3] the alternative approach was proposed, based on using of arithmetic-logic 
relations and forming of recurrent matrixes. Basic principles of this approach, as well as corresponded formulas, are presented in this 
paper in the Section IV.

     Another significant problem of providing parallel calculations in cloud network is choosing the best method of error-coding with 
taking into account the transferring of information by the wire and wireless channels [4]. Most of well-known methods of error-coding 
are considered in the monographs and manual books [5-10]. In the Section V the comparative analyze of RS-codes and convolutional 
codes is provided and it is proved, that for transferring data in nosed communication channels applying of convolutional codes is 
preferable.

One of the possible features is also Real-Time Capability, which can be estimated via the following expression:

 Tr ≥ (Ttr + Tex + Δ) . (1+a)           (2)

     Where Tr– the given limit value for the reaction time of the computing system, Ttr – the necessary time for data transfer, Tex –  time of 
execution the formulated task, Δ– summarized process delay, a – average failure probability. By a repeated failure the given limit can 
even grow by the polynomial function (1+a+a2).

Arithmetic-Logic Relations and Recurrent Matrixes 
Arithmetic-Logic Relations

    The basic definition of arithmetic-logic relations was given in the manual book [3]. There was pointed out, that arithmetic-logic 
relation is simply defined as a sum of production corresponded algebraic and logic functions and written as follows [3]:

AL(x) = F1(x)∙L1(x)+F2(x)∙L2(x)+F3(x)∙L3(x)+Fn(x)∙Ln(x),           (3)

     Where F1(x) … Fn(x) – arithmetic functions, L1(x) … Ln(x) – logical functions, AL(x) – corresponded arithmetic logic relation, which 
created on the base of these arithmetic and logic functions.

Since the set of logical functions L1(x) … Ln(x) must meet to the requirements of isolation and consistency, main properties of logic 
equations L1(x) … Ln(x) have to be followed [3].

1.	 All numerical intervals, defined by the logical relations L1(x) … Ln(x), have to bead join each other and not intersect.
2.	 The range of values of the variable x on the numerical axis should be fully and consistently described by the choosing set of 

logical functionsL1(x), …, Ln(x). 

     The typical location of numerical intervals, described by logic relations L1(x), …, Ln(x) on the number axis, is presented on Fig. 1. 
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Figure 1: Illustration of the basic principle of forming arithmetic-logic equation.

     On the base of arithmetic-logic relation definition and formula (3) formed the new definition of recurrent arithmetic-logic relation, 
where the based logic relations formed as a discrete function of natural numbers n. In this case relation (4) is rewritten as follows [3]:

     If the arithmetic-logic functions AL(i) and AL(j) in equation (4) are the vectors of the same length, final created complex structure 
AL(n) is usually considered as recurrent matrix [3].

Recurrent Matrixes

     In the simple form the recurrent matrix is defined as the set of corresponded equations for defining the elements of matrix rows [3]:

M<1>=v1, M<2> =v2, ..., M<n>=vn; M<i>=F(i, M<i-1>,M<i-2>,...,M<i-n>),           (5)

     Where v – vectors, M<i> – row of matrix with number i, F– vector-function, which defined the function for calculation the matrix 
elements [3]. For the particular tasks F is defined as multidimension arithmetic-logic function with the following components F1, F2, 
…, Fn. In the form of mathematic relations vector F is written as follows [3]:

F = {F1, F2, …, Fn}; F1 = AL(1), F2 = AL(2), Fn = AL(n).                   (6)

     Generally, the main conception of forming the recurrent matrix is using for all rows of matrix the same set of basic functions F1, F2, 
…, Fn, defined by equations (6).

Described basic principle of forming the recurrent matrixes is illustrated at the Fig. 2 [1, 3]. 

Figure 2: Illustration of the basic principle of forming the recurrent matrixes.
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     In the manual book [3] was pointed out and proved, that the recurrent matrixes approach is the is a real alternative to structured 
programming techniques and that the basic algorithm of discrete and calculation mathematic can be realized in arithmetic-logic rela-
tions and recurrent matrixes approach.

Considering here the possibilities of using this approach for estimation the level of algorithm parallelization.

Using of Recurrent Matrix Approach for Estimation the Level of Algorithm Parallelization

     Basic approach for analyzing the speedup factor of considered algorithm with using the matrix approach is dividing the connections 
between matrix elements into separate independent flows [1]. There was pointed out, that with including the sequential connections 
between the elements of matrix in the row the parallelization of such algorithm is impossible. Corresponded structure of matrix is 
presented in Fig. 3. At this figure the hierarchical and sequential connections between the matrix elements are marked separately. 

Figure 3: Illustration of the hierarchical and sequen-
tial connections at the recurrent matrix.

     If the structure of recurrent matrix, corresponded to considered algorithm, included only hierarchical connections, data threads 
T1, T2 …, Tn for all matrix elements can be considered separately. In this case with assumption, that all connections in threads have the 
similar complicity for calculation, speedup factor p of considered algorithm is estimated by the following relation [1]:

Where N – number of connections for considered matrix element.

     Equation (7) can be simply modified for the threads with different complicity of calculations, and, corresponding, different time of 
treatment by CPU. In such conditions the complicity of elementary connections between elements Fj have to be analyzed and the factor 
of complicity of each elementary operation Fj is defined relatively to the simplest operation by factor αj. For such condition equation 
(7) rewritten as:

     Usually using of relation (8) given the more realistic value of speedup factor p, than using of equation (7). In any case, equations (7) 
and (8) allows estimate the level of parallelization the algorithm in the cloud network calculations.

Estimation the Efficiency of Using Error-Coding Methods for Cloud Network Calculations 
Estimation of Probability of Error in the RS Codes

     The RS-codes are multiposition codes, which structure is based on the Galois Field theory [5-10]. The probability of error in RS-
codes Pe, corresponding to the basic principles of combinatorial analysis and probability theory, is defined as follows [11, 12]:
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Where t – number of detected errors, n – number of symbols in code combination, θ – number of distortion of bits in code, m – order of 
Galois Field, pb – the probability of distortion 1 bit in symbol,  – the number of combinations from n elements by θ.

The maximal number of corrected symbols in RS-codes tmax is defined by the following equation [6, 7]:

Where k– number of bits in coded word.

     Dependences of error probability in RS-code on the probability of distortion one-bit Pe(pb) for different order of  Galois Field m and 
number of detected errors t are presented at Fig. 4. It is clear from obtained dependences, that even with middle level of bit-error 
probability pb> 0.1 the probability of distortion RS-code word is very high, namely, Pe ≈ 1. Therefore, using of RS-code in noised wire 
and wireless communication channels of cloud computer systems isn’t recommended. Such type of codes is suitable only for stable 
operated un-noised apparatus, such as controllers of hard discs in PC or optic disk drivers [5]. 

Figure 4: Dependences of probability of error in RS-codes on probability of 
bit error. 1 – m = 5, t = 5; 2 – m = 6, t = 5; 3 – m = 6, t = 7; 3 – m = 6, t = 10.

Estimation of Probability of Error in the Convolutional Codes

     Defining the probability of error in the convolutional codes is more sophisticated problem, than the same task for RS-codes. It is 
due to the more complex structure of convolutional codes, which correction functions are generally based on the theory of events 
prediction. The structure of convolutional codes is complexly described by the diagrams of Finite-States-Machine (FSM) and its poly-
nomial transmitting function T(D, L, N), where D – the Hemming distance between zero and waiting codes sequences, L – the counter 
of transmissions between the start and current FSM state, and N – the mark to transmissions, which corresponded to the input signal 
1 [5-10].  Minimal number of unrecognized errors in convolutional cede is always corresponded to the minimal power of variable D 
at the polynomial presentation of transmitting function. For example, for standard potential coding, like Alternative Mark Inversion 
(AMI) [4], the relation for defining Pe(pb) is written as follows [5, 10]:

     For example, solving equation (10) for the convolutional code with basic parameters , where k = 5 – the number of bits in the 
shift register and 1/n=1/3 redundancy factor of code, transferring function T(D, L, N) is defined by analyzing the FSM structure as 
follows [5]:

     Therefore, the maximal value of unrecognized errors at the code construction with such structure is df= 7.  Substituting of equation 
(12) into equation (11) giving following result:
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After substituting in relation (13) the value 

From basic equation (11), we obtaining the dependence Pe(pb) in complete form as follows:

The dependence Pe(pb), obtained with using the set of equations (12 –15), is presented at Fig. 5. 

Figure 5: Dependence of the probability of error in convolu-
tional code on probability of bit error.

     It is clear from graphic dependences, presented at Fig 4 and Fig. 5, that for the convolutional code with parameters  significantly 
grates error-correction ability, than for the constructions of RS-codes with different parameters m and t, is provided. The maximum 
value of error at the convolutional code  obtained for the value of bit-error pb = 0.5, which is due by the same probability of receiv-
ing the correct and wrong signals. If the probability of wrong signal became higher, the convolutional code intelligent system automat-
ically converted the wrong signal to correct one [5-10]. Therefore, the probability of error in the convolutional codes in conditions of 
high value of bit error is generally smaller. By this reason namely such type of codes is recommended to applying in the communication 
systems with noised channels [5-10], therefore using these codes in the cloud computing systems also can be considered as the best 
solution. 

Conclusion

     In the paper is shown that the approach of recurrent matrixes is very effective to estimation the level of parallelization of computa-
tional algorithm in cloud network calculations. This approach based on analyzing the connections between recurrent matrix elements 
and dividing the hierarchical connections into independent thread with the same or different complicity. After that the level of paral-
lelization is estimated with using relations (7) or (8).

     Possibility of using error-correction coding for transferring data in the cloud network communication channels is also analyzed. 
Alternative consideration of RS-codes and convolutional codes have been provided. Provided analyze shown, that applying of RS-codes 
is preferable in the un-noised apparatus and it using in noised communication channels usually isn’t effective. In the contrary, convo-
lutional codes constructions can be successfully applied in the noised communication channels even with high probability of bit-error. 
For estimation the probability of unrecognized error at the convolutional codes words the FSM theory and basic equations (11) for 
FSM transferring function, written at the polynomial form, is used. As an example, the result of such estimations for convolutional code 
with parameters  are presented at Fig. 5.
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     The results of this work are very significant and important for the experts in the branch of creating specific computer software for 
realizing the distributed parallel calculations in the cloud systems. For estimation the basic level of algorithm parallelization the sim-
ple relations (7) or (8) can be used, and for choosing the best convolutional code construction the FSM theory and equation (11) can 
be successfully applied. For providing polynomial operations with the FSM transferring function T(D, L, N)modern CAD systems for 
mathematic transforming, like MatLab, MAPLE and Mathematica can be effectively used.
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